241 resultados para Divalent europium
Resumo:
Memory effects in single-layer organic light-emitting devices based on Sm3+, Gd3+, and Eu3+ rare earth complexes were realized. The device structure was indium-tin-oxide (ITO)/3,4-poly(ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT)/Poly(N-vinyl carbazole) (PVK): rare earth complex/LiF/Ca/Ag. It was found experimentally that all the devices exhibited two distinctive bistable conductivity states in current-voltage characteristics by applying negative starting voltage, and more than 10(6) write-read-erase-reread cycles were achieved without degradation. Our results indicate that the rare earth organic complexes are promising materials for high-density, low-cost memory application besides the potential application as organic light-emitting materials in display devices.
Resumo:
The ligand Hhfth [4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dione], which contains a heptafluoropropyl group, has been used to synthesize several new ternary lanthanide complexes (Ln = Er, Ho, Yb, Nd) in which the synergistic ligand is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy). The two series of complexes are [Ln(hfth)(3)phen] [abbreviated as (Ln)1, where Ln = Er, Ho, Yb] and [Ln(hfth)(3)bipy] [abbreviated as (Ln)2, where Ln = Er, Ho, Yb, Nd]. Members of the two series have been structurally characterized. The growth morphology, diffuse reflectance (DR) spectra, thermogravimetric analyses, and photophysical studies of these complexes are described in detail. After ligand-mediated excitation of the complexes, they all show the characteristic near-infrared (NIR) luminescence of the corresponding Ln(3+) ions (Ln = Er, Ho, Yb, Nd). This is attributed to efficient energy transfer from the ligands to the central Ln(3+) ions, i.e. an antenna effect. The heptafluorinated substituent in the main hfth sensitizer serves to reduce the degree of vibrational quenching. With these NIR-luminescent lanthanide complexes, the luminescent spectral region from 1300 to 1600 nm, which is of particular interest for telecommunication applications, can be covered completely.
Resumo:
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Resumo:
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).
Resumo:
Three novel polyoxometalate derivatives decorated by transition metal complexes have been hydrothermally synthesized. Compound 1 consists of [(PMo6Mo2V8O44)-Mo-VI-V-V-O-IV{CO (2,2'-bipy)(2)(H2O)}(4)](3+) polyoxocations and [(PMo4Mo4V8O44)-Mo-IV-V-V-O-IV{Co(2,2'-bipy)(2)(H2O)}(2)](3-) polyoxoanions, which are both built on mixed-metal tetracapped [PMo8V8O44] subunits covalently bonded to four or two {Co(2,2'-bpy)(2)(H2O)}(2+), clusters via terminal oxo groups of the capping V atoms. Compound 2 is built on [(PMo8V6O42)-V-VI-O-IV{Cu-I(phen)}(2)](5-) clusters constructed from mixed-metal bicapped [(PMo8V6O42)-V-VI-O-IV](7-) subunits covalently bonded to two {Cu(phen)}(+) fragments in the similar way to 1. The structure of 3 is composed of [(PMo9Mo3O40)-Mo-VI-O-V](6-) units capped by two divalent Ni atoms via four bridging oxo groups.
Resumo:
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen(2))(2)V4O12].5H(2)O (1) and [Ni(phen)(3)](2)[V4O12] . 17.5H(2)O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. P (1) over bar, a = 10.3366(10), b = 11.320(3), c = 13.268(3) Angstrom, alpha = 103.888(17)degrees, beta = 92.256(15)degrees, gamma = 107.444(14)degrees, Z = 1; C72H131N12Ni2O29.5V4 (2), triclinic. P (1) over bar, a = 12.305(3), b = 13.172(6), c = 15.133(4), alpha = 79.05(3)degrees, beta = 76.09(2)degrees, gamma = 74.66(3)degrees, Z = 1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59degrees < theta < 26.02degrees and 2.01degrees < 0 < 25.01degrees using the omega-scan technique, respectively. The structure of 1 consists of a [V4O12](4-) cluster covalently attached to two {Cd(phen)(2)}(2+) fragments, in which the [V4O12](4-) cluster adopts a chair-like configuration. In the structure of 2, the [V4O12](4-) cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the V4O12](4-) unit and crystallization water molecules.
Resumo:
Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.
Resumo:
We report on the preparation of luminescent silica mesoporous molecular sieves (MCM-48) activated by the europium complex Eu(DBM)(3) . 2H(2)O (where DBM = dibenzoylmethane), using a simple wet impregnation method. Different concentrations of Eu(DBM)(3) . 2H(2)O were introduced into the MCM-48 cubic structure, and the resulting samples were washed with ethanol for different times. UV-Vis absorption measurements and thermogravimetric analysis were used to estimate the amount of Eu complex that has been incorporated within the pores of the MCM-48 host. The various samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy, diffuse reflectance (DR) and fluorescence measurements. The results reveal that Eu complexes have been successfully introduced into the pores of MCM-48 without disrupting the structure. All the impregnated MCM-48 materials show the typical red luminescence of Eu3+ when excited with a UV lamp. Shifts of the absorption maxima were observed in the DR and fluorescence excitation spectra and will be discussed in relation with guest-host interactions between the organic complex and the silica matrix. The decay profiles of the europium luminescence in the different samples were also measured and discussed.
Resumo:
A new tetrakis praseodymium(tu) complex Pr(TFNB)(3)Phen has been synthesized, in which TFNB is 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione and Phen is 1,10-phenanthroline. Its crystal structure and luminescent spectra were successfully determined and investigated. The typical antenna effect existing in the luminescence of Pr(TFNB)(3)Phen was revealed by the study of the UV-Vis absorption spectra of ligands and the excitation spectrum of Pr(TFNB)(3)Phen.
Resumo:
earth (Eu3+, Dy3+)-heteropolytungstate thin films were fabricated by self-assembly method successfully. The thin films give off strong fluorescence, which can be observed by eyes upon UV irradiation. The characteristic emission behaviors of the rare earth ions in self-assembled thin film were investigated compared with those of the corresponding solids. It is noticed that the intensity ratio between D-5(0) --> F-7(2) and D-5(0) --> F-7(1) of Eu3+ and the intensity ratio between F-4(9/2) --> H-6(13/2) and F-4(9/2) --> H-6(15/2) of Dy3+ in the self-assembled films are different from those of the corresponding solids. Furthermore, the self-assembled films present shorter fluorescence lifetimes than the corresponding solids. The reasons for these results have been discussed.
Resumo:
The complex fluoride LiBaF3 and LiBaF3:M(M = Eu, Ce) is solvothermally synthesized at 180 degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF3:M(M= Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF3: Eu emission spectra, there is one sharp line emission located at 360 nm arising from f --> f transition of Eu2+ in the host lattice, and typical doublet 5d-4f emission of Ce3+ in LiBaF3 powder is shown.
Resumo:
The coordination numbers for the samarium atoms and the Sm-O bond distances in SrB4O7:Sm and SrB6O10:Sm prepared in air were determined by means of Sm-L-3 edge EXAFS. The coordination. was found to be nine-folded for both these hosts and the bond distance was 2.40-2.42 Angstrom in SrB4O7:Sm and 2.42-2.44 Angstrom in SrB6O10:Sm. For SrB4O7:Sm the coordination number is coincident with that of the strontium. atoms suggesting the substitution of the samarium atoms at the strontium sites. The coordination number of the strontium atoms in SrB6O10 was also suggested to be nine assuming the same type of substitution. The valences of samarium were determined from the luminescent spectra. Both divalent and trivalent ions were present in both SrB4O7:Sm and SrB6O10:Sm, while the fraction of Sm2+ was higher in the former than in the latter. This difference has been assigned to the difference in rigidity between the B-O networks in these structures.
Resumo:
A thin film electroluminescence cell with the structure of ITO/PPV/PVK:Eu(TTA)(4)C5H5NC16H33:PBD/Alq(3)/Al has been fabricated. Red emission with a very sharp spectral band at 614nm was observed and a maximum luminance of 20cd . m(-2) at 36V was obtained from the spin-coated device. The full width at half maximum of luminescent spectrum is less than 10nm.
Resumo:
In this study, a terbium complex, Tb(acac)(3)bath (acac: acetylacetone, bath: 4,7-diphenyl-1,10-phenanthroline), was synthesized and its luminescent properties were investigated compared with the reported terbium complex, Tb(acac)(3)phen (phen: phenanthroline). When it was used as an emitting material in organic electroluminescent (EL) device, the triple-layer-type device with a structure of glass substrate/ITO (indium-tin oxide)/TPD (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine)/Tb(acac)(3)bath/Alq(3) (tris (8-hydroxyquinolinato) aluminum)/Al (aluminum) exhibited bright characteristic emission of terbium ion upon applying DC voltage. An apparent difference was observed between the photoluminescence spectrum and the EL spectrum. The EL device exhibited some characteristics of diode and the maximum luminance of 77 cd/m(2) was obtained at 17 V.
Resumo:
Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propylthiethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by H-1 NMR IR and MS, The monomer acts as a ligand for Tb3+ ion and as a sol-gel precursor. Band emission front Tb3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the D-5(4) level of Tb3+ ion falls in the exciting range to sensitize Tb3+ ion fluorescence.