461 resultados para Capillary Eletrophoresis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an indium tin oxide (ITO) electrode-based Ru(bPY)(3)(2+) electrochemiluminecence (ECL) detector for a microchip capillary electrophoresis (CE). The microchip CE-ECL system described in this article consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate with an ITO electrode fabricated by a photolithographic method. The PDMS layer was reversibly bound to the ITO electrode plate, which greatly simplified the alignment of the separation channel with the working electrode and enhanced the photon-capturing efficiency. In our study, the high separation electric field had no significant influence on the ECL detector, and decouplers for isolating the separation electric field were not needed in the microchip CE-ECL system. The ITO electrodes employed in the experiments displayed good durability and stability in the analytical procedures. Proline was selected to perform the microchip device with a limit of detection of 1.2 muM (S/N = 3) and a linear range from 5 to 600 muM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete wavelets transform (DWT). was applied to noise on removal capillary electrophoresis-electrochemiluminescence (CE-ECL) electropherograms. Several typical wavelet transforms, including Haar, Daublets, Coiflets, and Symmlets, were evaluated. Four types of determining threshold methods, fixed form threshold, rigorous Stein's unbiased estimate of risk (rigorous SURE), heuristic SURE and minimax, combined with hard and soft thresholding methods were compared. The denoising study on synthetic signals showed that wave Symmlet 4 with a level decomposition of 5 and the thresholding method of heuristic SURE-hard provide the optimum denoising strategy. Using this strategy, the noise on CE-ECL electropherograms could be removed adequately. Compared with the Savitzky-Golay and Fourier transform denoising methods, DWT is an efficient method for noise removal with a better preservation of the shape of peaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)(3)(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cm x 25 mum (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1 mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 muA), with end-column Ru(bpy)(3)(2+) ECL detection. A 5 mmol/L Ru(bpy)(3)(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9 x 10(-7) mol/L and 7.6 x 10(-9) mol/L for Spd and Spm, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the construction and application of a sol-gel derived carbon composite electrode (CCE) as an amperometric detector for capillary electrophoresis. The electrochemical properties were characterized and compared with those of conventional carbon fiber and carbon paste electrode (CPE). Experimental results show that peak-to-peak noise of CCE was about 20% of CPE and electrode capacitance was comparatively low. When applied to the detection of dopamine and epinephrine, the optimal detection potential for CCE was 0.1 V lower than CPE under the same separation conditions; CCE with diameter of 75 and 100 mum could achieve a low detection limit of 3.10(-8) and 6.10(-8) M for the detection of epinephrine, which approaching that of the 33-mum diameter carbon fiber electrode. Also, the linearity for epinephrine at CCE was more than two orders of magnitude, which was slightly wider than that of carbon fiber electrode. Applications to real sample analysis were tested by the determination of betahistine dihydrochloride in tablets and human urine. Using CCE with diameter less than or equal to100 mum as an amperometric detector after capillary electrophoresis separation, a low detection limit and a wide linear range combined with excellent reproducibility were obtained. This CCE possesses of many advantages, namely, convenience, ease of fabrication, low cost and high stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biogenic amines, putrescine, cadaverine, spermidine and spermine were separated and quantified by capillary electrophoresis with pulsed amperometric detection. Detection potential of the pulsed amperometric detection was optimized as 0.6 V Optimal separation of the biogenic amines was achieved using a separation buffer of 30 mM citrate at pH 3.5, while keeping the buffer in the detection cell as 20 mM NaOH. Using these conditions, the four biogenic amines were baseline separated. Extrapolated limits of detection for putrescine, cadaverime, spermidine and spermine were 400, 200, 100 and 400 nM for the standard mixture (polyamines dissolved in running buffer), respectively. These are lower than ultraviolet detection and comparable or even lower than laser-induced fluorescence detection results as reported in the literature. The number of theoretical plates was maintained at the 105 level, which is absolutely higher than any reported method. When applying capillary electrophoresis-pulsed amperometric detection to milk analysis, only spermidine was found in amounts varying between 0.1 and 0.5 mg/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence detection in a capillary electrophoresis separation system was used for the determination of diphenhydramine. In this study, platinum disk electrode (300 mum in diameter) was used as a working electrode and the influence of applied potential and buffer conditions were investigated. Under optimal conditions: 1.2 V applied potential, pH 8.50, 15 kV separation voltage and 10 mmol l(-1) running buffer, the calibration curve of diphenhydramine was linear over the range of 4 x 10(-8) to 1 x 10(-5) Mol l(-1). This technique gave satisfactory precision, and relative standard deviations of migration times and chemiluminescence peak intensities were less than 1 and 6%, respectively. The technique was applied to animal studies for determination of diphenhydramine extracted from rabbit plasma and urine samples, and the extraction efficiency were between 92 and 98.5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polytetrafluoroethylene(PTFE) capillary Ubbelohde viscometer was designed and constructed. The relative viscosities of aqueous solutions of a polyethylene oxide and a polyvinylpyrrolidone sample were carefully determined down to an extremely dilute concentration region. In comparison with the data obtained from the common glass capillary viscometer, slippage is believed to occur in the PTFE capillary due to its hydrophobic nature. While for the glass capillary viscometer, conventional viscous flow is operative and adsorption phenomena occur since both the solvent water and aqueous solution are wet and/or adsorbed onto the glass capillary surface due to the existence of hydroxyl groups on glass surface. The data were analyzed with a recently developed wall-effect theory and satisfactory results were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

capillary electrophoresis (CE) is characterized. A 300 mum diameter Pt working electrode was used to directly couple with a 75 mum inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy)(3)(2+) showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy)(3)(2+) in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 mum capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 20-260 mum. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 mum capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 X 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 X 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-1) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report capillary electrophoresis coupling to a solid-state electrochemiluminescence (ECL) detector for the first time. The solid-state ECL detector was fabricated by immobilizing the ECL reagent tris(2,2'-bipyridyf)ruthenium (TBR) in poly-(p-styrenesulfonate)-silica-poly(vinyl alcohol) grafting 4-vinylpyridine copolymer films. The excellent stability of the solid-state ECL detector in the phosphate solution satisfied application in CE. The CE with solid-state ECL detector system was characterized using tripropylamine (TPA) and proline. The influences of detection potential, the concentration of TBR in the film, and pH value of ECL buffer were investigated. The linear range for TPA and proline was 0.005-10 muM and 5-10 mM with correlation coefficients of 0.997 and 0.998, respectively. The detection limit (signal-to-noise ratio S/N = 3) was estimated to be 0.002 and 2.0 muM for TPA and proline, respectively. The relative standard deviations for 1.0 pm TPA and 1.0 mm proline were 8.7% and 7.5% with theoretical plate numbers of 70 000 and 16 000, respectively. Compared with the CE-ECL of TBR in aqueous solution, the CE coupling with solid-state ECL detector system gave the same sensitivity of analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of capillary HPLC-high-resolution MS was developed for the trace analysis of ATP, GTP, dATP and dGTP Dimethylhexylamine (DMHA) was used as ion-pairing agent for the HPLC retention and separation of the nucleotides and positive ion electrospray time-of-flight MS was used for the detection. The application of capillary HPLC allowed minimal usage of DMHA while providing excellent peak retention and resolution, which significantly reduced the ion suppression in electrospray ionization-MS analysis and thus increased the sensitivity. Adduct ions of nucleotides and DMHA were used as quantitative ions in order to achieve the best sensitivity. DMHA concentration at 5 mM in the aqueous mobile phase at pH 7 was found to be the optimal conditions for the C Is capillary column. The method was applied to determine ATP level in cultured C6 glioma cells that were treated with toxic concentrations of Zn. The results showed that the cellular ATP level decreased from 2.7 pmol/cell (<10% cell death) in average control cell samples to 0.36 pmol/cell as the concentration of Zn increased to 120 mg/l (>35% cell death) in culture medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describe a Ru(bpy)(3)(2+) based electrochemiluminescence (ECL) method to detect procyclidine in human urine following separation by capillary electrophoresis (CE). An ECL detection cell was designed for post-column addition of Ru(bpy)(3)(2+). Parameters affecting separation and detection were optimized, leading to a detection limit of 1 x 10(-9) mol/l in an on-capillary stacking mode. For application in urine, a cartridge packed with slightly acidic cation-exchange resin was used to eliminate the matrix effects of urine and improve the detection sensitivity. Extraction recovery was nearly 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, curcumin from Chinese herbal medicine turmeric was determined by capillary electrophoresis with amperometric detection (CE-AD) pretreated by a self-designed, simple, inexpensive solid-phase extraction (SPE) cartridge based on the material of tributyl phosphate resin. An average concentration factor of 9 with the recovery of >80% was achieved when applied to the analysis of curcumin in extracts of turmeric. Under the optimized CE-AD conditions: a running buffer composed of 15 mM phosphate buffer at a pH 9.7, separation voltage at 16 W, injection for 6 s at 9 W and detection at 1.20 V, CE-AD with SPE exhibited low detection limit as 3 - 10(-8) mol/l (SIN = 3), high efficiency of 1.0(.)10(5) N, linear range of 7(.)10(-4) -3(.)10(-6) mol/l (r = 0.9986) for curcumin extracted from light petroleum. The method developed resulted in enhancement of the detection sensitivity and reduction of interference from sample matrix in complicated samples and exhibited the potential application for routine analysis, especially in food, because a relatively complete process of sample treatment and analysis was described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a high efficiency separation technique, capillary electrophoresis(CE) has been widely used in various fields of analytical science. Amperometry is one of the most sensitive electrochemical detection methods in CE. The capillary/electrode decoupling mechanism, applications,of new electrode systems in CE, detection cell technique are discussed in detail. Amperometric detection is compatible with microfabricated CE chips and will make the concept of lab-on-a-chip become a reality. Because of these progresses, amperometry is becoming a widely acceptable detection method,for more chemical and biological analytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)]-electro-generated chemiluminescence (ECL) detection is a promising method for clinical analysis. In this study, a method combining CE with Ru(bpy)(3)(2+) ECL (CE-ECL) detection that can be applied to amine-containing clinical species was developed, and the performance of CE-ECL as a quantitative method for determination of sulpiride in human plasma or urine was evaluated. Methods: Sulpiride was separated by capillary zone electrophoresis in uncoated fused-silica capillaries [510 cm x 25 mum (i.d.)] filled with phosphate buffer (pH 8.0 and a driving voltage of +15 kV, with end-column Ru(bpy)(3)(2+) ECL detection. A platinum disc electrode was used as working electrode. Sulpiride in human plasma or urine samples (100 muL) was extracted by a double-step liquid-liquid extraction procedure, dried under nitrogen at 35 degreesC in a water bath, and reconstituted with 100 muL of filtered water. The extraction solvent was ethyl acetate-dichloromethane (5:1 by volume). Results: Under optimum conditions (pH 8.0 phosphate buffer, injection for 6 s at 10 kV, and +1.2 V as detection potential), separation of sulpiride was accomplished within 4 min. The calibration curve was linear over a concentration range of 0.05-25.0 mumol/L, and the limit of detection was 2.9 x 10(-8) mol/L for sulpiride. Intra- and interday CVs for ECL intensities were <6%. Extraction recoveries of sulpiride were 95.6-101% with CVs of 2.9-6.0%. The method was,clinically validated for patient plasma and urine samples. Conclusions: CE combined with Ru(bpy)(3)(2+) ECL is reproducible, precise, selective, and enables the analysis of sulpiride in human plasma and urine. It thus is of value for rapid and efficient analysis of amine-containing analytes of clinical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three beta -blockers (propranolol, timolol, acebutolol) were separated by capillary electrophoresis (CE) and detected by end-column electrochemical detection (EC). In the present work, a carbon fiber (33 mum) electrode was used as the working electrode. The effect of the buffer concentration, buffer pH, detection potential and separation voltage on the separation of analytes and behavior of electrochemical detection was systematically investigated. The optimum conditions determined were as following: 40 cm length, 25 mum i.d. capillary; 17.5 kV separation voltage; 2 s injection at 15 kV; 70mM phosphate buffer, pH 3.5; detection potential + 1.2V (vs. Ag/AgCl). Under these conditions, the linear ranges of beta -blockers were over three orders of magnititude and the low detection limit of 10(-8)M was obtained. This method was also applied to detect the simulated urine sample.