377 resultados para BLOCK-COPOLYMER LITHOGRAPHY
Resumo:
Diblock polyampholyte brushes with different block sequences (Si/SiO2/poly(acrylic acid)-b-poly (2-vinylpyridine) (PAA-b-P2VP) brushes and Si/SiO2/P2VP-b-PAA brushes) and different block lengths were synthesized by sequent surface-initiated atom transfer radical polymerization (ATRP). The PAA block was obtained through hydrolysis from the corresponding poly(tert-butyl acrylate). The polyampholyte brushes demonstrated unique pH-responsive behavior. In the intermediate pH region, the brushes exhibited a less hydrophilic wetting behavior and a rougher surface morphology due to the formation of polyelectrolyte complex through electrostatic interaction between oppositely charged blocks. In the low pH and high pH regions, the rearrangement of polyampholyte brushes showed great dependence on the block sequence and block length. The polyampholyte brushes with P2VP-b-PAA sequence underwent rearrangement during alternative treatment by acidic aqueous solution (low pH value) and basic aqueous solution (high pH value).
Resumo:
The thin films of a symmetric crystalline-coil diblock copolymer of poly(L-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (T-g(PLLA)), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (T-c), the glass transition temperature of PS (T-g(PS)), the peak melting point of PLLA crystals (T-m(PLLA)), and the end melting point of PLLA crystals (T-m,end(PLLA)). When annealed at (T-c =) 80 degrees C (T-c < T-g(PS) < T-ODT, order-disorder transition temperature), 123 degrees C (T-g(PS) < T-c < T-m(PLLA) < T-ODT). 165 degrees C (T-g(PS) < T-m(PLLA) < T-c < T-m,end(PLLA) < T-ODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced.
Resumo:
The epsilon-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 degrees C and the maximal dissociation rate appeared at 226 degrees C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 degrees C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator.
Resumo:
novel biodegradable Y-shaped copolymer, poly(L-lactide)(2)-b-poly(gamma-benzyl-L-glutamic acid) (PLLA(2)-b-PBLG), was synthesized by the ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with centrally amino-functionalized poly(L-lactide), PLLA(2)-NH2, as a macroinitiator in a convenient way. The Y-shaped copolymer and its precursors were characterized by H-1 NMR, FT-IR, GPC, WAXD and DSC measurements. The self-assembly of the PLLA(2)-b-PBLG copolymer in toluene and benzyl alcohol was examined. It was found that the self-assembly of the copolymer was dependent on solvent and on relative length of the PBLG block. For a copolymer with PLLA blocks of 26 in total degree of polymerization (DP), if the PBLG block was long enough (e.g., DP = 54 or more), the copolymer/toluene solution became a transparent gel at room temperature. In benzyl alcohol Solution, only PLLA(2)-b-PBLG containing ca. 190 BLG residues could form a gel: those with shorter PBLG blocks (e.g., DP = 54) became nano-scale fibrous aggregates and these aggregates were dispersed in benzyl alcohol homogeneously.
Resumo:
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.
Resumo:
Docetaxel (DX) is one of the most effective antineoplastic drugs. Its current clinical administration is limited because of its hydrophobicity and Serious side effects. A polymer/DX conjugate is designed and successfully prepared to solve these problems. It is monomethoxy-poly(ethylene glycol)-block-poly(L-lactide)/DX (MPEG-PLLA/DX) It was synthesized by reacting DX with carboxyl-terminated copolymer MPEG-PLLA, which was prepared by reacting succinic anhydride with hydroxyl-terminated copolymer monomethoxy-poly(ethylene glycol)-block-poly (L-lactide) (MPEG-PLLA). Its structure and molecular weight was confirmed by H-1 NMR and GPC. The MPEG-PLLA/DX micelles in aqueous solution were prepared Using a SO]vent displacement method and characterized by dynamic light scattering for size and size distribution, and by transmission electron microscopy for surface morphology. Its antitumor activity against HeLa cancer cells evaluated by MTT assay showed that it had a similar antitumor activity to Pure D at the same drug content.
Resumo:
The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.
Resumo:
We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.
Resumo:
Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.
Resumo:
Compatibility of graft copolymer compatibilized two incompatible homopolymer A and B blends was simulated by using Monte Carlo method in a two-dimensional lattice model. The copolymers with various graft structures were introduced in order to study the effect of graft structure on the compatibility. Simulation results showed that incorporation of both A-g-B (A was backbone) and B-g-A (B was backbone) copolymers could much improve the compatibility of the blends. However, A-g-B copolymer was more effective to compatibilize the blend if homopolymer A formed dispersed phase. Furthermore, simulation results indicated that A-g-B copolymers tended to locate at the interface and anchor two immiscible components when the side chain is relatively long. However, most of A-g-B copolymers were likely to be dispersed into the dispersed homopolymer A phase domains if the side chains were relatively short. On the other hand, B-g-A copolymers tended to be dispersed into the matrix formed by homopolymer B. Moreover, it was found that more and more B-g-A copolymers were likely to form thin layers at the phase interface with decreasing the length of side chain.
Resumo:
In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.
Resumo:
Lamellar platelets of triblock copolymers grown in dilute toluene solution with trace amounts of water can be used as templates for tethered diblock copolymer chain preparation and analysis. Polystyrene-bpoly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two different block fractions were used as model templates to generate tethered P2VP-b-PS chains on the platelet basal surfaces. In toluene solution the aggregation states of PS-b-P2VP-b-PEO were sensitive to the water content in the solution. For toluene with trace amount of water, spherical micelles were formed in the early stage and large square platelets would gradually grow from these spherical micelles. The hydrogen bonding between water and EO units was responsible for the formation of micelles and subsequent square platelets in the solution. Tethered P2VP-b-PS chains on basal surface of PEO platelets could be regarded as diblock copolymer brushes and the density (or: 0.086-0.36) and height (d: 3.5-14.3 nm) of these tethered chains could be easily modulated by changing the crystallization condition and/ or the molecular weight of each block. The tethered P2VP-b-PS chains were responsive to different solvent vapor.
Resumo:
We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.
Resumo:
Self-assembly thin films of symmetric triblock copolymer after annealing and quenching were examined by an effective Monte Carlo simulation method. The defects in the ordered lamellae of the thin films after quenching, which were dependent on the initialization of copolymer melts, are removed in the thin films after annealing. The mean-square gyration radius and end-to-end distance of copolymer chains in the thin films after annealing are smaller than those in the thin films after quenching because of the complete relaxation of polymer during annealing. We also find that the density of A block in the region near to the surface is higher than that in the interior of the thin films. As a result, it is different from the thin films of symmetric A(n)B(n) diblock copolymer, in which surface ordering forms before the interior, that ordering phenomena occurs first in the interior region in the thin films of symmetric A(n)B(m)A(n). triblocl copolymer.
Resumo:
We have investigated systematically the morphology of thin films spin-coated from solutions of a semicrystalline diblock copolymer, poly(L-lactic acid)-block-polystyrene (PLLA-b-PS), in solvents with varying selectivity. In neutral solvents (chloroform and tetrahydrofuran (THF)), a spinodal-like pattern was obtained and the pattern boundary was sharpened by diluting the solution. Meanwhile, loose spherical associates, together with larger aggregates composed of these associates by unimer bridges, formed partly due to crystallization of the PLLA blocks in relatively concentrated solutions. In slightly PS-selective solvent (e.g., benzene), both loose and compact spherical micelles were obtained, depending on the polymer concentration, coexisting with unimers. When enhancing the selectivity with mixed solvents, for example, mixing the neutral solvent and the slightly selective solvent with a highly PS-selective solvent, CS2, loose assemblies (nanorods in CS2/THF mixtures and polydisperse aggregates in CS2/benzene mixtures) and well-developed lamellar micelles were obtained.