265 resultados para BETA-UNSATURATED ALDEHYDES
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.
Resumo:
Two mononuclear neutral copper(I) complexes, Cu(L-1)PPh3 (1), Cu(L-2)(PPh3)(2) (2) ([L-1](-) = [{N((C6H3Pr2)-Pr-i-2,6)C(H)}(2)CPh](-); [L-2](-) = [{N(C6H5)C(H)}(2)CPh](-)) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered beta-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.
Resumo:
beta-NaYF4 hexagonal microprisms and microrods with different aspect ratios have been prepared via a simple hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The influences of reaction temperature and the molar ratio of NaF to y(3+) on the crystal phases and shapes of final products have been studied in detail. The aspect ratios of products increase gradually with the increase of reaction temperature and NaF/Y3+ molar ratio. The growth mechanisms of crystals prepared under the different conditions are presented systematically. More importantly, the systematical investigation on the luminescence properties of beta-NaYF4:xEu(3+) (x = 0.5, 1, 2, 3, 5, and 10 mol %) with hexagonally microprismatic morphology shows the characteristic emissions of Eu3+ (D-5(J)-F-7(J'), J, J' = 0, 1, 2, 3). Under the excitation of single wavelength light of 397 nm, the luminescence colors of the corresponding products can be tuned feasibly from bluish white to yellow to red by changing the doping concentration of Eu3+.
Resumo:
The thermoluminescence (TL) properties of Ce3+ doped NaSr4(BO3)(3) phosphor under the beta-ray irradiation were reported. The polycrystalline sample was synthesized by high temperature solid-state reaction. The TL glow curve of NaSr4(BO3)(3):Ce3+ phosphor was composed of only one peak. TL kinetic parameters of NaSr4(BO3)(3):Ce3+ were deduced by the peak shape method, the activation energy (E) was 0.590 eV and the frequency factor was 1.008x10(6) s(-1). TL dose response was linear in the range of measurement. The 3-dimensional (3D) TL emission spectrum was also recorded, the emission spectrum consisted of two bands located at 441 and 479 nm respectively, corresponding to the characteristic 4f(0)5d(1)-> F-2((5/2,7/2)) transitions of the Ce3+ ion. The fading behavior of the NaSr4(BO3)(3):Ce3+ phosphor over a period of 15 d was also studied.
Resumo:
Copolymerizations of ethylene with 5-vinyl-2-norbornene or 5-ethylidene-2-norbornene under the action of various titanium complexes bearing bis(beta-enaminoketonato) chelate ligands of the type, [(RN)-N-1=C(R-2)CH=C(R-3)O](2)TiCl2 (1, R-1=Ph, R-2=CF3, R-3=Ph; 2, R-1=C6H4F-p, R-2=CF3, R-3=Ph; 3, R-1=Ph, R-2=CF3, R-3=t-Bu; 4, R-1=C6H4F-p, R-2=CF3, R-3=t-Bu; 5, R-1=Ph, R-2=CH3, R-3=CF3; 6, R-1=C6H4F-p, R-2=CH3 R-3=CF3), have been shown to occur with the regioselective insertion of the endocyclic double bond of the monomer into the copolymer chain, leaving the exocyclic vinyl double bond as a pendant unsaturation. The ligand modification strongly affects the copolymerization behaviour. High catalytic activities and efficient co-monomer incorporation can be easily obtained by optimizing the catalyst structures and polymerization conditions.
Resumo:
A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.
Resumo:
Three heteroligated (salicylaldiminato)(beta-enaminoketonato)titanium complexes [3-Bu-t-2-OC6H3CH=N(C6F5)][(p-XC6H4)N=C(Bu-t)CHC(CF3)O]TiCl2 (3a: X = F, 3b: X = Cl, 3c: X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the beta-enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer.
Resumo:
An efficient and divergent one-pot synthesis of substituted 2H-pyrans, 4H-pyrans and pyridin-2(1H)-ones from beta-oxo amides based on the selection of the reaction conditions is reported. Mediated by N,N,N',N'-tetramethylchloroformamidinium chloride, beta-oxo amides underwent intermolecular cyclizations in the presence of triethylamine at room temperature to give substituted 2H-pyrans in high yields, which could be converted into substituted 4H-pyrans in the presence of sodium hydroxide in ethanol at room temperature, or into substituted pyridin-2(1H)-ones under reflux.
Resumo:
A facile and practical one-pot synthesis of beta-oxo thioamides from beta-oxo amides has been developed. By treatment with isothiocyanates in ethanol in the presence of potassium carbonate, a series of beta-oxo amides was converted, under reflux, in high yields into the corresponding beta-oxo thioamides.
Resumo:
Water-soluble supramolecular inclusion complexes of alpha-, beta-, and gamma-cyclodextrin-bicapped C-60 (CD/C-60) have been investigated for their photoinduced DNA cleavage activities, with the aim to assess the potential health risks of this class of compounds and to understand the effect of host cyclodextrins having different cavity dimensions. Factors such as incubation temperature, irradiation time, and concentration of NADH or CDs/C-60 supramolecular inclusion complexes have been examined. The results show that alpha-, beta-, and gamma-CDs/C-60 are all able to cleave double-stranded DNA under visible light irradiation in the presence of NADH. However, a difference in the photoinduced DNA cleavage efficiency is observed, where the cleavage efficiency increases in the order of alpha-, beta-, and gamma-CD/C-60. The difference is attributed to the different aggregation behavior of the inclusion complexes in aqueous solution, which is correlated to the cavity dimension of the host cyclodextrin molecules.
Resumo:
A notable amount of PP beta-crystal (30%, by X-ray diffraction pattern) has been found in the PP samples as polymerized at normal static isothermal crystallization conditions without using any extra nucleating agents. Existence of catalyst residues in the sample is decisive, which slows down the crystallization rate facilitating the formation of beta-form spherulites. Comparatively, high molecular weight PP favors the formation of beta-form spherulites, deducting from no beta-crystal detected in the degraded samples. Finally, high isotacticity is also required for obtaining qualitative beta-form spherulites, demonstrated by increased beta-crystal content after removal of weak crystalline fraction of the sample.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
The non-covalent complexes between three flavonoid glycosides (quercitrin, hyperoside and rutin) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:1 complexation of each flavonoid glycoside (guest) to the DM-beta-CD (host) was monitored in the negative ion mode by mixing each guest with an up to 30-fold molar excess of the host. The binding constants for all complexes were calculated by a linear equation in the order: DM-beta-CD:quercitrin > DM-beta-CD:rutin > DM-beta-CD:hyperoside. A binding model for the complexes has also been proposed based on the binding constants and tandem mass spectrometric data of these complexes.
Resumo:
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF-MS), in combination with immunoaffinity provided a powerful tool for determining epitope (antigenic determinant) in protein. The linear epitope of the beta(2)-microglobulin was characterized in the paper. The method as follows: at first beta(2)-microglobulin was digested by a proteolytic enzyme to produce an appropriate set of peptide fragments, then peptide fragments containing the linear epitope were selected and separated from the pool of peptide fragments by immunoprecipitation with the monoclonal antibody. The agarose beads were collected carefully after the reaction. Unbound peptides would be washed away, while the peptides containing the epitope would remain bound to the immobilized antibody after. the beads were washed several times with appropriate buffer. At last the masses of the bound peptides were identified directly by MALDI-TOF MS. Using Endoproteinase Glu-C Endoproteinase Lys-C and Trypsin in the experiment, the linear epitope of beta(2)-microglobulin was located within peptide fragment 59-69, that is, DWSFYLLYYTE.