179 resultados para Abdominal-wall Defects
Resumo:
The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310
Resumo:
To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR,we have carried out a detailed study of the photomultiplier,the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.
Resumo:
The light calibration system is one of the key components of Neutron Wall detector. It is used to calibrate the electronics and to monitor the long-term stability of the detector modules. With the detaile investigations, a calibration system with high-power LED (3W) driven by the fast pulses has been carried out. It is also tested together with the detector module of the Neutron Wall and the result of the preliminary calibration demonstrates that it fulfills the needs. It's a new design proposal to the light calibration system of the fast scintillator detector.
Resumo:
With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL II) which connects the CSRm and the CSRe, an experimental setup for physics research is highly required. A large area neutron detection wall is the main part of the setup. This paper introduced the detection principle of the neutron detection wall and the Monte-Carlo simulation of its design under the environment of the Geant4 toolkit. We presented the final design with the optimized parameters and the performance of the wall.
Resumo:
Vacancy-type defects are introduced into magnesium aluminate spine] (MgAl2O4 (1 1 0)) by Ar-ions implantation, and then Ag-ions are implanted into the depth rich in vacancy-type defects. The ultraviolet-visible spectrometry (UV-VIS) and positron annihilation spectroscopy (PAS) are used to study the influence of vacancy-type defects on nucleation of Ag nanoparticles. After introduction of vacancy-type defects the pronounced increase of surface plasmon resonance (SPR) absorbance intensity indicates that defects enhance the nucleation of Ag nanoparticles. The PAS results reveal that vacancy-type defects provide pre-nucleating centers for Ag nanoparticles nucleation and growth. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the construction of a large area neutron detector (neutron wall) that is used to detect neutrons at GeV energies, the performances of all the sampling paddle modules prepared for the neutron wall are investigated with a specially designed test bench. Tested by cosmic rays, an average intrinsic time resolution of 222.5 ps is achieved at the center of the modules. The light attenuation length and the effective speed of the light in the module are also investigated.
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.
Resumo:
The selective oxidation of cyclohexane to cyclohexanol and cyclohexanone is an important chemical process and it has been paid more attentions recently. In the present work, the stainless steel reactor wall was found to influence the selective oxidation of cyclohexane very significantly, and a quasi-crystalline Ti45Zr35Ni17Cu3 alloy with the similar compositions as the reactor wall was used as a catalyst for the cyclohexane oxidation, as expected, a higher activity was obtained with it. The present results open up a new avenue for developing new catalyst for alkane oxidation.