241 resultados para 245
Resumo:
The X-rays induced during interaction of highly charged argon ions with a beryllium surface are reported. It is found that the K shell X-ray yield of single particle during interaction of hydrogen-like argon ions was 3.6 x 10(-3), which is five orders more than that of heliumlike argon ions. Moreover, due to the screening the 2s electron, no K X-ray was emitted during interaction of lithium-like argon ions with the beryllium surface. It is also found that the X-ray spectrum induced by Ar17+ interacting with residual gases is very different from that induced by Ar17+ interacting with the surfaces, that provided an experimental evidence for the existence of the hollow atoms below the surface.
Resumo:
Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing.
Resumo:
Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.
Resumo:
The main ion beams acceleration facilities and research fields of the Institute of Modern Physics (IMP) are briefly introduced. Some of the experimental instruments, typical works and the obtained results on the materials research with swift heavy ions at the IMP-accelerators are presented.
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.
Enhanced biological effect induced by a radioactive C-9-ion beam at the depths around its Bragg peak
Resumo:
To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.
Resumo:
Hypersensitive response of mammalian cells in cell killing to X- and gamma-rays has been reported at doses below 1 Gy. The purpose of this study was to examine the low dose sensitivity of human hepatoma SMMC-7721 cells irradiated with Co-60 gamma-rays and 50 MeV/u C-12 ions. Experiments using gamma-rays and charged particle irradiation were performed, particularly in the low dose range from 0 to 2 Gy. The survival effect of SMMC-7721 cells was measured by means of standard clonogenic assay in conjunction with a cell sorter. The result indicates SMMC-7721 cells showed hyper-radiosensitive response at low doses and increased radio-resistance at larger single doses for the carbon ions (LET = 45.2 keV/mu m) and the gamma-rays. However, the HRS/IRR effect caused by high-LET irradiation is different from that by low-LET radiation. This might possibly be due to the difference in the mode of energy deposition by particle beam and low-LET irradiation.
Resumo:
This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed oil SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based oil the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data.
Resumo:
In this paper, to design a new preamplifier for optimum performances with charged-particle or heavy-ion detectors, the CMOS FET is implemented as a feedback capacitor C-fp, so that the entire system should be built only with MOSFET. This work is a revolution design because to realize an ASIC for a preamplifier circuit, the capacitor will also be included. We succeed after a simulation to maintain a rise time less than 3 ns, the output resistance less than 94 Omega and the linearity almost good.
Resumo:
X射线谱仪以其多用途、无损、操作简单、快速、价格低廉和运行费用很低等优点,己经成为应用最为广泛的多元素分析仪器。采用液氮冷却的X射线谱仪在荧光分析技术领域得到广泛的应用和普遍认可。液氮制冷的一个主要缺点是必须有一个液氮存储罐作为完整谱仪的一部分。从而,在实际应用中受到液氮价格贵和液氮供应厂少的限制,大大地制约了该种谱仪的进一步推广使用。如果能采用另外的技术得到足够低的温度,在此温度下探测器具有极低的漏电流,也可使X射线谱仪有极低的噪声和相当好的能量分辨率;因此克服上述限制就成为一个有重要意义的课题方向。本文在国内首次实现采用半导体电制冷技术对平面离子注入(Si一PIN)探测器制冷,降低探测器漏电流至10~(-13)以下,配合低噪声脉冲光反馈前放,成功地使得整个x射线谱仪能量分辨率达到262eV(对~(55)Fe的Mn Kα K射线)。虽然电制冷X射线谱仪的分辨率没有采用液氮冷却的好,但是它的性能已足够在包括利用X射线能量分离进行荧光分析等多种应用所需。考虑到元素周期表中钾元素以上的毗邻两元素的Ka特征X射线的能量差在380eV以上;例如,K和Ca的峰线宽分别是243eV和245 eV,由此得到电制冷X射线谱仪己可完成对K, C a和更高Z的元素进行能散荧光分析工作。并且,液氮罐的取消可方便的设计在野外使用的便携式X射线荧光分析设备。 文中全面介绍了X射线谱仪的各个组成部分和其背景知识。并详细描述了探测器系统、电制冷系统和低噪声电子学系统,充分展示了研制X射线谱仪的关键所在。最后给出了电制冷X射线谱仪的测试结果和应用设计。
Resumo:
A-type zeolite membranes were successfully synthesized on tubular alpha-Al2O3 supports by secondary growth method with vacuum seeding In the seeding process, a thin, uniform and continuous seeding layer was closely attached to the support surface by the pressure difference between the two sides of the support wall. The effects of seed particle size, suspension concentration, coating pressure difference and coating time on the membrane and its pervaporation properties were investigated. The as-synthesized membranes were characterized by XRD and SEM. The quality of the membranes was evaluated by the pervaporation dehydration of 95 wt. % isopropanol/water mixture at 343 K. High quality A-type zeolite membranes can be reproducibly prepared by the secondary growth method with vacuum seeding under the conditions: seed particle size of 500-1200 nm, suspension concentration of 4-8 g/l, coating pressure difference of 0.0100-0.0250 MPa and coating time of 45-180 s. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The isobaric molar heat capacities of powder of Co2O3 were determined by an adiabatic calorimeter in the temperature range from 78 to 350 K. No phase transition takes place in this temperature range. The relationship of C-p,C-m with thermodynamic temperature T was established as C-p,C-m = -5 x 10(-6)T(3) + 0.0026T(2) + 0.0325T + 4.2592 (J K-1 mol(-1)), fitting coefficient R-2 = 0.9996. According to this relationship and the relationships between thermodynamic functions, the thermodynamic functions of powder of C2O3 were derived with 298.15 K as reference temperature. Thermal decomposition of Co2O3 powder was studied through thermogravimetry (TG). The possible mechanism of the thermal decomposition reaction was suggested according to the TG result. (C) 2003 Elsevier Science B.V. All rights reserved.