171 resultados para time-resolved Kerr rotation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples. SEM and TEM results indicate the as-formed precursor fibers and belts are smooth. and the as-prepared nanofibers and microbelts consist of nanoparticles. The doped rare-earth ions show their characteristic emission under ultraviolet excitation, i.e. Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(j) (J = 6-3) transitions, respectively. The energy transfer process from Ce3+ to Tb3+ in LaPO4:Ce3+, Tb3+ nanofibers was further studied by the time-resolved emission spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文简要地介绍了有机半导体中载流子迁移率的几种模型,着重阐述了测量有机半导体中载流子迁移率的各种方法的测试原理。主要有如下几种:稳态(CW)直流电流-电压特性法(steady-state DC JV),飞行时间法(time of flight,TOF),瞬态电致发光法(transient electroluminescence,transient EL),瞬态电致发光法的修正方法即双脉冲方波法和线性增压载流子瞬态法(carrier extraction by linearly increasing voltage,CELIV),暗注入空间电荷限制电流(dark injection space charge limited current,DI SCLC),场效应晶体管方法(field-effect transistor,FET),时间分辨微波传导技术(time-resolved microwave conductivity technique,TRMC),电压调制毫米波谱(voltage-modulated millimeter-wave spectroscopy,VMS)光诱导瞬态斯塔克谱方法(photoi...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of water in a phase-separated biodegradable poly(ester urethane) shape-memory polymer with poly(E-caprolactone) (PCL) as the soft segment was investigated using time-resolved FTIR-ATR. On the basis of the band fitting and water ordering in drawn films, the broad water band in the 3800-2800 cm(-1) region was decomposed into four bands located at 3620, 3510, 3400, and 3260 cm(-1), and the first two components at 3620 and 35 10 cm(-1) were assigned to the vibrations of antisymmetric and symmetric stretching of water hydrogen bonded with the C=O group of the soft segment. The other two were associated with water bonded to the urethane hard segments in the forms of N-H:O-H:O=C bridge hydrogen bond and double hydrogen bonds with two C=O groups, respectively. Furthermore, band fitting and two-dimensional correlation analyses revealed that in the diffusion process, water first diffuses into the continuous soft-rich PCL phase and then into the hard-rich urethane domains, forming double hydrogen bonds with two C=O groups prior to the bridge hydrogen bond in the form of N-H:O-H:O=C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse, core-shell-structured SiO2@NaGd(WO4)(2):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL), and low-voltage cathodoluminescence (CL) as well as time-resolved PL spectra and lifetimes. PL and CL study revealed that the core-shell-structured SiO2@NaGd (WO4)(2):Eu3+ particles show strong red emission dominated by the D-5(0) - F-7(2) transition of Eu3+ at 614 nm with a lifetime of 0.74 ms. The PL and CL emission intensity can be tuned by the coating number of NaGd(WO4)(2):Eu3+ phosphor layers on SiO2 and by accelerating voltage and the filament current, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2@GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2@GdPO4: Eu3+ phosphors show orange-red luminescence with Eu(3+)sD(0)-F-7(1) (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2@GdPO4: Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-1-y(2)SiO(5):Eu3+ and X-1-Y2SiO5:Ce3+ and/or Tb3+ phosphor layers have been coated on nonaggregated, monodisperse, submicron spherical SiO2 particles by a sol-gel process, followed by surface reaction at high temperature (1000 degrees C), to give core/shell structured SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), TEM, photoluminescence (PL), low voltage cathodoluminescence (CL), and time-resolved PL spectra and lifetimes are used to characterize these materials. The XRD results indicate that X-1-Y2SiO5 layers have been successfully coated on the sur- face Of SiO2 particles, as further verified by the FESEM and TEM images. The PL and CL studies suggest that SiO2@Y2SiO5:Eu3+, SiO2@Y2SiO5:Tb3+ (or Ce3+/Tb3+), and SiO2@Y2SiO5:Ce3+ core/shell particles exhibit red (Eu3+, 613 rim: D-5(0)-F-7(2)), green (Tb3+, 542nm: D-5(4)-F-7(5)), or blue (Ce3+, 450nm: 5d-4f) luminescence, respectively. Pl, excitation, emission, and time-resolved spectra demonstrate that there is an energy transfer from Ce3+ to Tb3+ in the SiO2@Y2SiO5:Ce3+,Tb3+ core/shell particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microsecond time-resolved laser fluorescence spectroscopic analysis set was developed, A chelate-cyclic anhydride of diethylenetrimin pentaacetic acid anhydride (DTPAA) was synthesized. An anti-HBs antibody was purified, A EU3+ -DTPAA-anti-HBs label was prepared by two step procedure. We described the optimal condtion with EU3+ as marker and DTPAA as chelate bounding to antibody molecule. Labeling parameters such as solvent pH, protein and chelate molar ratio, reaction time, separation method were discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general strategy has been developed for fabrication of ultrathin monolayer and multilayer composite films composed of nearly all kinds of polyoxometalates (POMs), including isopolyanions (IPAs), and heteropolyanions (HPAs). It involves stepwise adsorption between the anionic POMs and a cationic polymer on alkanethiol (cysteamine and 3-mercaptopropionic acid) self-assembled monolayers (SAMs) based on electrostatic interaction. Here a Keggin-type HPA SiMo11VO405- was chosen as a main representative to elucidate, in detail, the fabrication and characterization of the as-prepared composite films. A novel electrochemical growth method we developed for film formation involves cyclic potential sweeps over a suitable potential range in modifier solutions. It was comparatively studied with a commonly used method of immersion growth, i.e., alternately dipping a substrate into modifier solutions. Growth processes and structural characteristics of the composite films are characterized in detail by cyclic voltammetry, UV-vis spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), micro-Fourier transform infrared reflection-absorption spectroscopy (FTIR-RA), and electrochemical quartz crystal microbalance (EQCM). The electrochemical growth is proven to be more advantageous than the immersion growth. The composite films exhibit well-defined surface waves characteristic of the HPAs' redox reactions. In addition, the composite films by the electrochemical growth show a uniform structure and an excellent stability. Ion motions accompanying the redox processes of SiMo11VO405- in multilayer films are examined by in situ time-resolved EQCM and some results are first reported. The strategy used here has been successfully popularized to IPAs as well as other HPAs no matter what structure and composition they have.