158 resultados para nanoscale electrical connectivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five Ln(2)SrMCuO(6.5) oxides (M = Co, Ln = Y and Ho; M = Fe, Ln = Y, Ho, and Dy) were synthesized, and their crystal structures, IR spectra, and physical properties were studied. They have almost the same structure and crystallize in orthorhombic systems. Below room temperature, Y2SrFeCuO6.5, a known layered oxide, shows antiferromagnetic behavior, but the four new oxides are paramagnetic. Y2SrFeCuO6.5 fits the Curie-Weiss law in the temperature range 300-100 K, but Y2SrCoCuO6.5 shows complex magnetic behavior because of the disproportion of some Co+3 to Co+2 and Co+4 The five oxides are all p-type semiconductors in the measured temperature range and have large electrical resistivities at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of solid electrolytes (Ce0.8RE0.2)(1-x)MxO2-delta(RE: Rare earth, M: Alkali earth) were prepared by sol-gel methods. XRD indicated that a pure fluorite phase was formed at 800 degrees C. The synthesis temperature by the sol-gel methods was about 700 degrees C lower than by the traditional ceramic method. The electrical conductivity and impedance spectra were measured. XPS showed that the oxygen vacancy increased obviously by doping MO, thus, resulting in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte was improved. The effects of RE2O3 and MO on the electrical properties were discussed. The conductivity and the oxygen ionic transport number of (Ce0.8Sm0.2)(1-0.05)Ca0.05O2-delta is 0.126 S.cm(-1) and 0.99 at 800 degrees C, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By electrocrystallization of 2,6-[4,5-bis(n-butylsulfanyl)-1,3-dithiol-2-ylidene]-4,8-bis(6-iodo-n-hexyloxy)-1,3,5,7-tetrathia-s-indacene (BHBDTI) and [NBu4](4)[SiMo12O40] in the mixed solvent CHCl2CH2Cl and CH3CN, the new radical-ion salt [C42H60Cl2O2S12](2)[SiMo12O40] was prepared. It was characterized by means of IR and ESR spectroscopy and X-ray diffraction. In the crystal structure, organic radical dications and silicomolybdate anions are alternatively arranged along the a axis to form a 1-D conducting layer. The organic layer consists of two isolated groups of BHBDTI divided by the (011) plane without short interatomic contacts. However, in each group, BHBDTI molecules associate with each other in a head to tail manner running along the [011] direction and face-to-face overlapping with a relative shift by approximately one TTF subunit along the long axis of the molecule and a slight shift along the short axis of the molecule with significantly short S ... S contacts. The room-temperature d.c. conductivity determined by the two-probe method is 10(-4) S cm(-1), suggesting that the compound is a semiconductor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of processing conditions on the electrical and dynamic behavior of carbon black (CB) filled ethylene/ethylacrylate copolymer (EEA) composites was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Compared with the solution counterpart, the mechanical composites have a strong positive temperature coefficient (PTC) effect and a high dynamic elastic modulus, which results from the good dispersion state of carbon black in EEA, i.e. the strong interaction between carbon black and EEA. It can be concluded that the strong interaction between polymer and carbon black is essential for composites to have a high PTC intensity, good electrical reproducibility and high dynamic elastic modulus. Copyright (C) 1996 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conductivity mechanism for a carbon black (CB) filled high-density polyethylene (HDPE) compound was investigated in this work. From the experimental results obtained, it can be seen that the relation between electrical current density (J) and applied voltage across the sample (V) coincides with Simmons's equation (i.e., the electrical resistivity of the compound decreases with the applied voltage, especially at the critical voltage). The minimum electrical resistivity occurs near the glass transition temperature (T-g) of HDPE (198 K). It can be concluded that electron tunneling is an important mechanism and a dominant transport process in the HDPE/CB composite. A new model of carbon black dispersion in the matrix was established, and the resistivity was calculated by using percolation and quantum mechanical theories. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new oxides Sm2SrCo2O7, Sm2BaCo2O7 and Gd2SrCo2O7 have been synthesized successfully by solid state reaction mathod. The X-Ray diffraction spectra show that they are all isostructural with Sr3Ti2O7, and Ln(2)SrCo(2)O(7)(Ln=Sm,Gd) crystallized in tetragonal system, Sm2BaCo2O7 in orthrhombic system. The Co-O bonds in CoO2 planes of Ln(2)SrCo(2)O(7) are shorter than those of LnSrCoO(4)(Ln=Sm, Gd), and so their delectrons are more delocalized and their electrical resistivities are smaller. The electrical resistivities versus temperature in the range 300 similar to 1100K showed that the five brides show the characters of weakly localized systems. In the lower temperature range, the magnetic behaviors of Gd2SrCo2O7 and GdSrCoO4 fit Curie-Weiss law well, and the magnetic exchange reaction in CoO2 sublattices of Gd2SrCo2O7 is ferromagnetic, but that of GdSrCoO4 is antiferromagnetic. The other three oxides with Sm3+ showed complex magnetic behaviors which is perhaps related with the complexity of Sm3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new oxides Ln(2)MCo(2)O(7) (Ln = Sm, Gd; M = Sr, Ba) have been synthesized in solid state reaction method. The powder X-ray diffraction spectra show that they are all isostructural with Sr3Ti2O7. The electrical resistivities in the temperature range 300-1100 K show that they are all semiconductors, and a transition to metals is observed at 1053, 1053, and 573 K for Sm2SrCo2O7, Gd2SrCo2O7, and Sm2BaCo2O7, respectively. The magnetic suspectivities of Gd2SrCo2O7 in the temperature range 300-673 K fit the Curie-Weiss law well. A plateau is observed in the curves of Sm(2)MCo(2)O(7) (M = Sr, Ba) which is attributed to the configuration state change of Co(III) from low spin to high spin. (C) 1995 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical conductivities of pernigraniline after ion implantation with potassium ions were studied experimentally. Pernigraniline films were irradiated with doses ranging from 1 x 10(13) to 1 x 10(17) K+ ions/cm2 at 40 keV. The electrical conductivit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BiSrMn2O6 is prepared by solid state reaction at 850 degrees C. It is tetragonal with a= 0.7821nm c= 0.3790 nm. It is a black n-type semiconductor below 820K. Its resistivity is 3 Omega-CM at room temperature. A semiconductor -metal transition is observed around 820K, Bi1+xSr1-xMn2O6-y is a solid solution for -0.2 less than or equal to x less than or equal to 0.2. Its unit cell dimensions increase but resistivity decreases when the Bi contents increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All the members of the solid solution of YSr2-xCaxV3O9-y have the orthorhombic symmetry. Their electrical and magnetic properties have been studied. The magnetic susceptibility and electrical resistivity increase gradually with x. The system shows paramagnetic behavior both at 300 K and at 77 K. It is shown that a change of valence state of vanadium obviously affects the electrical and magnetic properties of the solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysprosium and ytterbium monophosphides have been prepared by the solid state reaction. The optical and electrical properties have been studied. Evidence that DyP and YbP are semiconductors has been obtained from the study of the absorption spectrum, the negative temperature coefficient of resistance and the rectifying effect. Their energy gaps are determined as 1.15 eV for DyP and 1.30 eV for YbP, electric conduction type is n-type, resistivities are about 10(-2) ohm cm and Hall mobility is 8.5-80 cm2/Vs. The p-n junction is formed on the LnP/Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical and magnetical properties of LaSr(2-x)Ca(x)V3O9 +/- y have been investigated. The compounds are antiferromagnetic. They show a metallic conduction other than semiconductivity. The trivalent and tetravalent vanadium ions coexist in the system. The magnetic susceptibility increases and the resistivity decreases at room temperature with the increase of x value. It is shown that the change of the valency state of vanadium obviously influences the electrical and magnetical properties of the system.