246 resultados para atomic resolution
Resumo:
In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.
Resumo:
The structure of silicon surfaces in the orientation range (113)-(5,5,12)-(337)-(112) has been investigated using high resolution LEED and photoemission both on a spherical and on flat samples. We find that Si(5,5,12) [5.3 degrees from (113) and 0.7 degrees from (937)] is the only stable orientation between (113) and (111) and confirm the result of Baski et al. [Science 269, 1556 (1995)] that it has a 2 x 1 superstructure with a very large unit cell of 7.68 x 53.5 Angstrom(2). Adsorption measurements of water on Si(5,5,12) yield a mobile precursor kinetics with two kinds of regions saturating at 0.25 and 0.15 ML which are related to adsorption on different sites. Using these results, a modified structure model is proposed. Surfaces between (113) and (5,5,12) separate into facets of these two orientations; between (5,5,12) and (112), they separate into (5,5,12) and (111) facets. (337) facets in this range may be considered as defective (5,5,12) facets.
Resumo:
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest [110] directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation, A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.
Resumo:
Step like morphology of (331)A high-index surfaces during atomic hydrogen assisted molecular beam epitaxy (MBE) growth has been investigated. Atomic Force Microscope (AFM) measurements show that in conventional MBE, the step heights and terrace widths of GaAs layers increase monotonically with increasing substrate temperatures. The terrace widths and step densities increase with increasing the GaAs layer thickness and then saturates. And, in atomic hydrogen assisted MBE, the terrace width reduces and density increases when depositing the same amount of GaAs. It attributes this to the reduced surface migration length of Ga adatoms with atomic hydrogen. Laterally ordered InAs self-aligned nano-wires were grown on GaAs (331)A surfaces and its optical polarization properties were revealed by photoluminescence measurements.