500 resultados para Usina de Xingó
Resumo:
We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.
Resumo:
Hexagonally ordered arrays of magnetic FePt nanoparticles on Si substrates are prepared by a self assembly of diblock copolymer PS-b-P2VP in toluene, a dip coating process and finally plasma treatment. The as-treated FePt nanoparticles are covered by an oxide layer that can be removed by a 40 s Ar+ sputtering. The effects of the sequence of adding salts on the composition distribution are revealed by x-ray photoelectron spectroscopy measurements. No particle agglomeration is observed after 600 degrees C annealing for the present ordered array of FePt nanoparticles, which exhibits advantages in patterning FePt nanoparticles by a micellar method. Moreover, magnetic properties of the annealed FePt nanoparticles at room temperature are investigated by a vibrating sample magnetometer.
Resumo:
A silicon-on-insulator (SOI) optical fiber-to-waveguide spot-size converter (SSC) overlaid with specially treated silica is investigated for integrated optical circuits. Unlike the conventional process of simply depositing the hot silica on silicon waveguides, two successive layers of silicon dioxide were grown on etched SSC structures by PECVD (plasma-enhanced chemical vapor deposition). The two layers have 0.8% index contrast and supply stronger cladding for an incident light beam. Additionally, this process is able to reduce the effective refractive index of the input mode to less than 1.47 (extremely close to that of the fiber), substantially weakening the unwanted back reflection. Exploiting this technology, it was demonstrated that the SSC showed a theoretical low mode mismatch loss of 1.23 dB for a TE-like mode and has an experimental coupling efficiency of 66%.
Resumo:
Generally, dipole mode is a doubly degenerate mode. Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property. We present a structure with elongated lattice, which only supports a single y-dipole mode. With this structure we can eliminate the degeneracy, control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode. In our experiment, the polarization extinction ratio of the y-dipole mode is as high as 51 1.
Resumo:
The dipole mode in triangular photonic crystal single defect cavity is degenerate. By deforming the lattice in photonic crystal we can obtain non-degenerate dipole modes. Lattice deforming in the whole photonic crystal destroys the characteristic of symmetry, so the distribution of the electromagnetic field is affected and the polarization of the electromagnetic field is also changed. Lattice deforming divides the degenerate dipole mode into the x-dipole mode and the y-dipole mode. It is found that the non-degenerate modes have better properties of polarization. So the high polarization and single dipole mode photonic crystal laser can be achieved by deforming the lattice of photonic crystal. In this paper, we simulated the cavity in photonic crystal slab and mainly calculated the quality factor of x-dipole mode under different deforming conditions and with different filling factors. The properties of polarization of x-dipole and y-dipole modes are also calculated. It is found that the ratio of intensities of E-x to E-y in x-dipole mode and that of E-y to E-x in y-dipole mode are 44 and 27, respectively.
Resumo:
The authors developed an inductively coupled plasma etching process for the fabrication of hole-type photonic crystals in InP. The etching was performed at 70 degrees C using BCl3/Cl-2 chemistries. A high etch rate of 1.4 mu m/min was obtained for 200 nm diameter holes. The process also yields nearly cylindrical hole shape with a 10.8 aspect ratio and more than 85 degrees straightness of the smooth sidewall. Surface-emitting photonic crystal laser and edge emitting one were demonstrated in the experiments.
Resumo:
In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future. (C) 2009 Optical Society of America
Resumo:
The reduced divergence angle of the photonic crystal vertical-cavity surface-emitting laser (PC-VCSEL) was investigated in both theory and experiment. The photonic crystal waveguide possessed the weakly guiding waveguide characteristic, which accounted for the reduction of the divergence angle. The three-dimensional finite-difference time-domain method was used to simulate the designed PC-VCSEL, and a calculated divergence angle of 5.2 degrees was obtained. The measured divergence angles of our fabricated PC-VCSEL were between 5.1 degrees and 5.5 degrees over the entire drive current range, consistent with the numerical results. This is the lowest divergence angle of the fabricated PC-VCSEL ever reported.
Resumo:
Calculations of electronic structures and optical properties of Mg (or Si) and Mn co-doped GaN were carried out by means of first-principle plane-wave pesudopotential (PWP) based on density functional theory - The spin polarized impurity bands of deep energy levels were found for both systems. They are half metallic and suitable for spin injectors. Compared with GaN Mn, GaN Mn-Mg exhibits a significant increase in T-C 1 while the 1.3 eV absorption peak in GaN Mn disappears due to addition of Mg. In addition, a strong absorption peak due to T-4(1) (F) -> T-4(2) (F) transition of Mn4+ were observed near 1.1 eV. Nevertheless, GaN Mn-Si failed to show increase of T-C, and the absorption peak was not observed at the low energy side.
Resumo:
Photoluminescence of GaAs0.973Sb0.022N0.005 is investigated at different temperatures and pressures. Both the alloy band edge and the N-related emissions, which show different temperature and pressure dependences, are observed. The pressure coefficients obtained in the pressure range 0-1.4GPa for the band edge and N-related emissions are 67 and 45 meV/GPa, respectively. The N-related emissions shift to a higher energy in the lower pressure range and then begin to redshift at about 8.5 GPa. This redshift is possibly caused by the increase of the X-valley component in the N-related states with increasing pressure.
Resumo:
A tunable edge-emitting microlaser is realised by a chirped line-defect photonic crystal waveguide. A tunable range of 57 nm is obtained experimentally.
Resumo:
High-quality GaNAs/GaAs quantum wells with high substitutional N concentrations, grown by molecular-beam epitaxy, are demonstrated using a reduced growth rate in a range of 0.125-1 mu m/h. No phase separation is observed and the GaNAs well thickness is limited by the critical thickness. Strong room-temperature photoluminescence with a record long wavelength of 1.44 mu m is obtained from an 18-nm-thick GaN0.06As0.94/GaAs quantum well. (C) 2005 American Institute of Physics.
Resumo:
Cubic boron nitride (c-BN) attracts widespread interest as a promising material for many potential applications because of its unique physical and chemical properties. Since the 1980's the research in c-BN thin films has been carried out, which reached its summit in the mid of 1990's, then turned into a downward period. In the past few years, however, important progress was achieved in synthesis and properties of cubic boron nitride films, such as obtaining > 1 mu m thick c-BN films, epitaxial growth of single crystalline c-BN films, and advances in mechanics properties and microstructures of the interlayer of c-BN films. The present article reviews the current status of the synthesis and properties of c-BN thin films.
Resumo:
A novel 10-period SiC/AlN multilayered structure with a SiC cap layer is prepared by low pressure chemical vapour deposition (LPCVD). The structure with total film thickness of about 1.45 mu m is deposited on a Si (111) substrate and shows good surface morphology with a smaller rms surface roughness of 5.3 nm. According to the secondary ion mass spectroscopy results, good interface of the 10 period SiC/AlN structure and periodic changes of depth profiles of C, Si, Al, N components are obtained by controlling the growth procedure. The structure exhibits the peak reflectivity close to 30% near the wavelength of 322 nm. To the best of our knowledge, this is the first report of growth of the SiC/AlN periodic structure using the home-made LPCVD system.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.