380 resultados para TRIPLET EMISSION
Resumo:
Single-walled carbon nanotube (SWNT) rings with a diameter of about 100 nm have been prepared by thermally decomposing hydrocarbon in a floating catalyst system. These rings appeared to consist mostly of SWNT toroids. High resolution transmission electron microscopy showed that these rings were composed of tens of SWNTs with a tightly packed arrangement. The production of SWNT rings was improved through optimizing various growth parameters, such as growth temperature, sublimation temperature of the catalyst, different gas flows and different catalyst components. The growth mechanism of the SWNT rings is discussed. In the field emission measurements we found that field emission from a halved ring is better than that from a whole SWNT ring, which contributed to the better emission from two opened ends of the nanotubes of the halved SWNT ring.
Resumo:
Er-doped Si nanoclusters embedded in SiO2 (NCSO) films were prepared by radio frequency magnetron sputtering on either silicon or quartz substrates. A 1.16 mu m (1.08 eV) photoluminescence (PL) peak was observed from an Er-doped NCSO film deposited on a Si substrate. This 1.16 mu m peak is attributed to misfit dislocations at the NCSO/Si interface. The emission properties of the 1.16 mu m peak and its correlation with the Er3+ emission (1.54 mu m) have been studied in detail. The observed behavior suggests that the excitation mechanism of the 1.16 mu m PL is in a fashion similar to that shown for Er-doped Si nanoclusters embedded in a SiO2 matrix. (C) 2006 American Institute of Physics.
Resumo:
High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.
Synthesis and temperature-dependent near-band-edge emission of chain-like Mg-doped ZnO nanoparticles
Resumo:
Chain-like Mg-doped ZnO nanoparticles were prepared using a wet chemical method combined with subsequent heat treatment. The blueshifted near-band-edge emission of the doped ZnO sample with respect to the undoped one was investigated by temperature-dependent photoluminescence. Based on the energy shift of the free-exciton transition, a band gap enlargement of similar to 83 meV was estimated, which seems to result in the equivalent shift of the bound-exciton transition. At 50 K, the transformation from the donor-acceptor-pair to free-to-acceptor emissions was observed for both the undoped and doped samples. The results show that Mg doping leads to the decrease of the acceptor binding energy. (c) 2006 American Institute of Physics.
Resumo:
The erbium-doped hydrogenated amorphous silicon suboxide films containing amorphous silicon clusters were prepared. The samples exhibited photoluminescence peaks at around 750 nm and 1.54 mum, which could be assigned to the electron-hole recombination in amorphous silicon clusters and the intra-4f transition in Er3+, respectively. Correlations between the intensities of these two photoluminescence peaks and oxidation and dehydrogenation of the films during annealing were studied. It was found that the oxidation is triggered by dehydrogenation of the films even at low annealing temperatures, which decisively changes the intensities of the two photoluminescence peaks. On the other hand, the increase of Er content in the erbium-doped hydrogenated amorphous silicon suboxide film will enhance Er3+ emission at 1.54 mum, while quench amorphous silicon cluster emission at 750 nm, such a competitive relationship, was also observed in the erbium-doped silicon nanocrystals embedded in SiO2 matrix. Moreover, we found that Er3+ emission is not sensitive to whether silicon clusters are crystalline or amorphous. The amorphous silicon clusters can be as sensitizer on Er3+ emission as that of silicon nanocrystals. (C) 2003 American Institute of Physics.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.
Resumo:
Stoichiometric gadolinium oxide thin films have been grown on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Gadolinium oxide shares Gd2O3 structures although the ratio of gadolinium and oxygen in the film is about 2:1 and a lot of oxygen deficiencies exist. Photoluminescence (PL) measurements have been carried out within a temperature range of 5-300 K. The detailed characters of the PL emission integrated intensity, peak position, and peak width at different temperature were reported and an anomalous photoluminescence behavior was observed. The character of PL emission integrated intensity is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Four peaks relative to alpha band and beta band were observed also. Therefore we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and the model of singlet-triplet exchange splitting of exciton was employed for discussion. (C) 2003 American Institute of Physics.
Resumo:
An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H
Resumo:
Photoluminescence (PL) from Er-implanted hydrogenated amorphous silicon suboxide (a-SiOX:H
Resumo:
Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.
Resumo:
The size of equilateral triangle resonator (ETR) needed for confining the fundamental mode is investigated by the total reflection condition of mode light rays and the FDTD numerical simulation. The confinement of the TM modes can be explained by the total reflection of mode light rays, and the confinement of the TE modes requires a larger ETR than the TM modes, which may be caused by excess scattering or radiation loss for the TE modes. With the multilayer staircase approximation, it is found that the spontaneous emission factor of the ETR lasers has the same form as that of strip waveguide lasers.
Resumo:
Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
Considering the complexity of the general plasma techniques, pure single CH3+ ion beams were selected for the deposition of hydrogenated amorphous (a) carbon films with various ion energies and temperatures. Photoluminescence (PL) measurements have been performed on the films and violet/blue emission has been observed. The violet/blue emission is attributed to the small size distribution of sp(2) clusters and is related to the intrinsic properties of CH3 terminals, which lead to a very high barrier for the photoexcited electrons. Ion bombardment plays an important role in the PL behavior. This would provide further insight into the growth dynamics of a-C:H films. (C) 2002 American Institute of Physics.
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.