141 resultados para Reservoirs
Resumo:
Permian reservoir in Sulige area of Ordos Basin, on which this paper focused, belongs to fluvial-delta lithofacies. The majority formations in this area are complicated channel sand deposit with serious inhomogeneity which makes natural gas exploration be very tough in this area. This inhomogeneity can be found everywhere both in large horizontal area and vertical profile of inner and interbedded formations.This paper studied the inhomogeneity characteristic of Permian formation in sulige area of Ordos Basin according to the logging data.Correlating with core data, a criterion to distinguish different type of reservoirs by using logging data is determined after the study of logging response is done considering the diverse conditions of deposit environments, lithology and reservoir space. The characteristic relationships between the various type formations and logging responses fully and systemically are established.It investigated reservoir parameter calculation methods amply. Combining the conventional and special logging data, basing on the feature of low porosity -permeability formation of sulige area, a set of methods to calculate reservoir parameters was formed including primary porosity, secondary porosity, fracture porosity, permeability and water saturation under the conditions of both low porosity-permeability and inhomogenous reservoirs. One thing should be pay close attention is the parameter M for calculating saturation. It is found that the M in low porosity -permeability formation decreases as the porosity decrease, which is opposite to the law that M increases as the porosity decrease in the formation with intermediate to high porosity and permeability. This view has innovated the traditional theory and offered theory basis for the logging interpretation of low porosity - permeability reservoir. Meanwhile it also improved the Arqi formula theoretically and enhanced the logging interpretation accuracy and rescued a number of formations which has been thought to be hopeless according to the old theory.By using advantage logging interpretation procedure, a territorial synthetic geology evaluation to the inhomogeneous reservoir was completed basing on the single well interpretation. All the reservoir evaluation parameters including sand formation thickness, primary porosity, secondary porosity were calculated and evaluated. The rules of changing and development for sand formation thickness, sand physical properties and secondary porous were found at different formations of upper part of the Member 8 of Shihezi, lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi individually. Evaluation and Correlation of these five formations were also completed and one conclusion was arrived: upper part of the Member 8 of Shihezi formation has the best performance followed by the lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi formation.After studied the relationship between reservoir deposition characteristic and the natural gas richness, it is regarded that reservoir inhomogeneity is the key issue of the impaction on the natural gas. Natural gas in Sulige gas field was mainly accumulated in sands of channel bar, distributary channel and debouchure bar. Especially, the quartz sand with rich of secondary porous space has obvious better physical properties than other reservoir and usually can forms the concentration of natural gas.
Resumo:
Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.
Resumo:
With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.
Resumo:
Facing the problems that Dagang region of Huanghua Depression has high exploration degree and its remaining resource potential and structure are not clear, the theory of Petroleum Accumulation System (PAS) is applied to divide and evaluate the oil/gas systems quantitatively. Then, the petroleum accumulation systems are taken as units to forecast and analyse the oil/gas resources and their structure using statistical methods of sampling analysis of discovery process model and generalized pareto distribution model. The exploration benefit of the unit is estimated using exploration simulation methods. On the basis of the above study, the resource potential of Huanghua Depression is discussed.Huanghua Depression can be diveded into four petroleum accumulation systems, i.e. North PAS5 Middle Qibei PAS, Middle Qinan PAS and South PAS. Each PAS can be diveded futher into several sub- PASs. Using the basic princple of Analytical Hierarchy Process, the method of quantitative evaluation of PAS is established. Then the elements and maturity of PAS are evaluated quantitatively.Taking migration and accumulation units and sub-PASs as prediction units, sampling analysis of discovery process model and generalized pareto distribution model are applied comparatively to forecast the resource structure of eight migration and accumulation units in six PASs of medium-high exploration degree. The results of these two methods are contrasted and analyzed. An examination of X2 data of these two models from exploration samples shows that generalized pareto distribution model is more effective than sampling analysis of discovery process model in Huanghua Depression. It is concluded that minimum and maximum size of reservoir and discovery sequence of reservoirs are the sensitive parameters of these two methods.Aiming at the difficult problem of forecast in low exploration degree, by analysis of relativity between resource parameters and their possible influential geological factors, forecast models for resource parameters were established by liner regressing. Then the resource structure is forecasted in PASs of low exploration degree.Based on the forecast results, beginning with the analysis of exploration history and benefit variation, the exploration benefit variation of the above PASs is fitted effectively using exploration simulation method. The single well exploration benefit of remaining oil resource is also forecasted reasonably.The results of resource forecast show that the total oil resources ofHuanghua Depression amount to 2.28 b illion ton. By the end o f 2 003, the accumulative total proved oil reserve is 0.90 billion ton and the remaining oil resources is 1.38 billion ton. The remaining oil resource is concentrated in Kongdian-Dengmingshi, Banqiao-Beidagang, Qidong-Yangerzhuang and Baidong-Qizhong sub-PASs.
Resumo:
北欧和北美的研究发现水库是典型的汞敏感生态系统,新建水库而引起的鱼体甲基汞污染问题已受到科学家的高度重视,而我国在这方面的研究比较薄弱。本论文选择乌江流域的6个水库作为研究对象,并根据年龄把这些水库划分为3个演化阶段,洪家渡、引子渡、索风营水库为初级演化阶段,普定、东风水库为中级演化阶段,乌江渡水库为高级演化阶段。对这6个水库总汞和甲基汞的输入和输出通量进行了研究,探讨了不同演化阶段的水库对总汞和甲基汞的“源/汇”作用,主要研究内容有以下三个方面:(1)各水库入出库河流中汞的分布特征;(2)大气降水中汞浓度及沉降通量的分布;(3)乌江流域不同水库汞的输入输出通量。通过本论文的研究,得出以下主要结论: 1. 乌江流域河流中总汞、颗粒态汞、溶解态汞、活性汞、总甲基汞、溶解态甲基汞的年均浓度分别为3.41±1.98、2.05±1.73、1.36±0.44、0.24±0.11、0.15±0.06、0.08±0.03 ng•L-1。与国内外其它河流的比较发现,总汞的浓度明显低于国外受污染的河流,略高于国外未受污染的河流。溶解态汞、活性汞、甲基汞的浓度略低于受污染的河流,与未受污染的河流基本相当。与同处在贵州喀斯特地区的阿哈湖、红枫湖、百花湖的入出库河流相比,总汞、溶解态汞、活性汞、甲基汞、溶解态甲基汞的浓度均明显偏低。 2. 水库的修建显著降低了出库河流中总汞、颗粒态汞的浓度,使总甲基汞和溶解态甲基汞的浓度升高,而且增加了出库河流中溶解态汞、活性汞、总甲基汞占总汞的比例。不同形态汞的沿程分布显示,梯级水库的修建改变了河流原有的汞的生物地球化学过程,使乌江多个河段的甲基汞升高,并且随着水库生态系统的不断演化,水库输出的甲基汞将增加,下游河流水体中甲基汞有继续升高的趋势。 3. 大气降雨中总汞、溶解态汞、颗粒态汞、活性汞、总甲基汞的浓度分别为7.49~149 ng•L-1、1.23~10.0 ng•L-1、5.76~142 ng•L-1、0.56~2.94 ng•L-1、0.08~0.82 ng•L-1,且以颗粒态汞为主,约占总汞比例的87%。总汞、溶解态汞、颗粒态汞、甲基汞的浓度有明显的季节变化趋势,冬春季高于夏秋季,而空间分布特征不明显。2006年总汞、甲基汞的年湿沉降通量为34.7±5.80 µg•m-2•yr-1、0.18±0.03 µg•m-2•yr-1,且主要受降雨量的影响。乌江流域降雨中总汞的浓度及其湿沉降通量远高于北美和日本,低于中国的一些城市地区(如长春和北京),而甲基汞的浓度和通量与其它地区相当。 4. 在乌江流域的不同水库中,降雨输入总汞和甲基汞的通量主要受降雨量和水库面积的影响,而与降雨的汞浓度间没有相关性。河流向水库输入总汞的量主要受河流流量的控制,而输入甲基汞和颗粒物的量受河流流量和浓度的影响。下泄水输出总汞、甲基汞、颗粒物的通量受浓度和流量的影响。由于流域面积/水面面积的比值较大,水库水量、总汞、甲基汞、颗粒物的输入以河流为主,分别占总输入的87%、80%、85%、86%。输出以下泄输出为主,下泄水输出的水量、总汞、甲基汞、颗粒物分别占总输出的80%、77%、86%、79%。 5. 从输入-输出通量的结果发现,各水库均表现为河流颗粒物输送的“汇”;除乌江渡水库外,其它水库均表现为总汞的“汇”;对甲基汞而言,引子渡、洪家渡、索风营水库表现为“汇”,而普定、东风、乌江渡水库则表现为“源”。 6. 普定和洪家渡水库中总汞的贮存率为56%和57%,明显高于其它水库,说明在上游有水库存在的情况下,水库对总汞“汇”的作用将降低。普定、东风、乌江渡水库中甲基汞的净通量分别为+69.4 g•yr-1、+368 g•yr-1、+857 g•yr-1,转化率为13%、73%、84%,说明甲基汞的净通量和转化率与水库的演化阶段有关,随着水库演化阶段的升高而增加,并且随着水库的不断演化,甲基汞将从“汇”变成“源”。
Resumo:
本论文选择乌江流域普定水库、东风水库作为研究对象,对两个水库系统中汞的环境地球化学循环做了较为完整深入的探讨。具体来说本论文包括以下几方面的工作:(1)揭示普定和东风水库水体各种形态汞的含量、时空分布规律。(2)水库水体水质参数的分布机制研究,明确与水质参数相联系的流域环境对水库水体汞分布的影响。(3)弄清普定水库、东风水库沉积物以及孔隙水各种汞形态的含量、分布规律。(4)建立普定水库、东风水库水体汞循环的质量平衡模型,对水体中汞形态的源、汇及其迁移通量进行定量研究。(5)分析了水库对河流甲基汞输送的源效应产生原因,以理解水库-河流系统中汞的环境地球化学循环的作用。通过本论文的研究,取得以下成果: 1、普定、东风水库水库各形态汞丰水期(夏季)普遍高于枯水期(冬、春季)。普定水库夏季总汞、总甲基汞平均浓度分别为4.48和0.32 ng/L,分别是其它两季平均浓度的2.53倍和3.05倍。东风水库夏季总汞、总甲基汞平均浓度分别为2.94和0.33ng/L,分别是其它两季平均浓度的2.53倍和2.64倍。夏季地表径流带来的汞的输入是引起这种季节差异的重要原因。 2、空间分布表明,普定、东风水库无机汞在由河流输入后经过水库系统内的迁移转化,在水库下游段其浓度已有所下降,表现了水库对于无机汞的 “清除”能力。甲基汞浓度在河流经水库蓄水后,在水库库体内得到升高和“蓄集”,并且峡谷型水库在丰水期水流输送作用下库体内的下游段水体具有更强的甲基汞“蓄集”能力。 3、相关矩阵分析表明,两个水库的水质参数悬浮颗粒物(SPM)、水温(T)和硝酸盐(NO3-)与各形态汞之间普遍存在显著的正相关关系,表明这些参数对于各形态汞的季节分布起着重要作用。夏季丰水期,河流由于雨水带进大量的农田和土壤颗粒,而成为普定、东风水库水体汞的一个重要输入源,同时夏季流域相对活跃的农业耕作活动可能是引起普定、东风水库水体汞水平升高的一个重要原因。 4、普定水库、东风水库沉积物总汞全年平均分别为0.198mg/kg和0.204mg/kg,两者没有显著差异,但明显的高于其它没有污染的水体沉积物,低于处于同一流域的红枫湖水库。沉积物甲基汞浓度峰值主要出现在硫酸盐还原细菌活动区域,有机质含量在某种程度上也影响着甲基汞浓度和分布。 5、两个水库沉积物孔隙水中溶解态无机汞、溶解态甲基汞含量明显大于上覆水体。普定水库沉积物4个剖面孔隙水中溶解态总汞向上扩散对上覆水体的影响程度均为夏季>冬季,而溶解态甲基汞向上扩散对水体的影响程度是冬季>夏季。东风水库沉积物溶解态总汞、溶解态甲基汞扩散对上覆水体的影响程度的季节变化没有规律。 6、水库水体总汞质量平衡模型的估算结果表明,普定水库水体的汞总源为19088.2 g.a-1,总汇为19087.4g.a-1。东风水库水体的汞总源为17116.5 g.a-1,总汇为22562.9g.a-1。河流输入都是两个水库总汞最大的源,普定水库最大的汇是水体是向沉积物的沉降,东风水库最大的汇下泄河流总汞的输出。 7、对水库在河流甲基汞输送过程中的“源”效应分析表明沉积物孔隙水向水体释放甲基汞是水库内部甲基汞产生的重要环节,是水库对河流形成甲基汞源效应的重要原因。