263 resultados para QUANTUM-STATE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantum wave function and the corresponding energy levels of the dissipative mesoscopic capacitance coupling circuits are obtained by using unitary and linear transformations. The quantum fluctuation of charge and current in an arbitrary eigenstate of the system have been also given. The results show that the fluctuation of charge and current depends on not only the eigenstate but also the electronic device parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and characterization of quantum cascade (QC) lasers based on InGaAs/InAlAs material system are investigated. Pronounced intersubband absorption from stacked active region of QC structure is used to monitor the wavelength of QC laser and disclose the material quality. The precise control of the epilayer thickness and the good quality of interfaces are demonstrated by the abundant narrow satellite peaks of X-ray diffraction. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 5.1-5.2 mum up to 300 K. For 10 x 800 mum(2) laser device, peak output power of similar to7.2 mW and threshold current density of 3 kA/cm(2) at room temperature are obtained. For some devices, if keep the peak output powers at the similar to2 mW level, quasi-continuous wave operation at room temperature persists more than 1 h are recorded. (Q) (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To overcome the isotropic directional emission of an ideal circular microdisk, two kinds of cylindrical mesa-like InGaAlP single quantum well (SQW) microdisks emitting at a visible red wavelength of 0.66 mu m have been fabricated. An anisotropic luminescence pattern was revealed by the microscopic fluorescence (FL) image. FL intensity, preferentially enhanced with twofold symmetry, appeared at the circumference of the InGaAlP SQW microdisks. Our results demonstrated that anisotropic radiation can be achieved by geometry shaping of the disks on the top view two-dimensional boundary slightly deformed from circular shape and/or on the side-view cross-section of the circular mesa by wet etching anisotropic undercut. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By extending the microscopic dipole model on optical-phonon modes as applied in quantum wells and quantum wires, to rectangular quantum dots (QD), optical phonon modes and their accompanying Frohlich potentials in QD are calculated and classified. When the bulk phonon dispersion is ignored, the optical phonon modes in QD can be clearly divided into the confined LO- and TO-bulk-like modes and the extended interface-like modes. Among the interface-like modes, a special attention is given to the corner modes, whose anisotropic behavior is depicted in the long wavelength limit. Based on the numerical results, a set of analytical formula are proposed to approximately describe the bulk-like modes, for which both the optical displacements and Frohlich potentials vanish at the interfaces. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large blueshift and linewidth increase in photoluminescence (PL) spectra of InAs quantum dots (QD's) in n-i-p-i GaAs superlattice were observed. By increasing the excitation intensity from 0.5 to 32 W/cm(2), the PL peak position blueshifted 18 meV, and the linewidth increased by 20 meV. Such large changes are due to the state-filling effects of the QD's resulted from the separation of photogenerated electrons and holes caused by the doping potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that the carrier capture and relaxation processes in InAs/GaAs quantum dots can be detected by a simple degenerate pump-probe technique. We have observed a rising process in the transient reflectivity, following the initial fast relaxation in a GaAs matrix, and assigned this rising process to the carrier capture from the GaAs barriers to the InAs layers. The assignment was modeled using the Kramers-Kronig relations. The capture time was found to depend strongly on the InAs layer thickness as well as on the excitation density and photon energy. (C) 2000 Elsevier Science Ltd. All rights reserved.