259 resultados para Melting conditions
Resumo:
In this paper, an investigation on the micro-structure of an Fe-base oxide-dispersion-strengthened (ODS) alloy irradiated with high-energy Ne-20 ions to different doses at a temperature around 0.5T(m) (T-m is the melting point of the alloy) is presented. Investigation with the transmission electron microscopy found that the accelerated growth of voids at grain-boundaries, which is usually a concern in conventional Fe-base alloys under conditions of inert-gas implantation, was not observed in the ODS alloy irradiated even to the highest dose (12000 at.ppm Ne). The reason is ascribed to the enhanced recombination of point defects and strong trapping of Ne atoms at the interfaces of the nano-scale oxide particles in grains. The study showed that ODS alloys have good resistance to the high-temperature inter-granular embrittlement due to inert-gas accumulation, exhibiting prominence of application in harsh situations of considerable helium production at elevated temperatures like in a fusion reactor.
Resumo:
Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.
Resumo:
Trichloroisocyanuric acid (TCCA) is a cheap, safe and readily available alternative to the commonly used hydrogen peroxide and hypochlorite for the phase-transfer catalytic epoxidation of alpha,beta-enones under non-aqueous conditions. A variety of chalcone derivatives give the corresponding epoxides with quantitative conversion and satisfactory yields in just a few hours under mild conditions. An asymmetric variant of the epoxidation can be carried out in the presence of chiral N-anthracenylmethylcinchonidine bromide catalyst giving 73-93% ees and 76-94% yields.
Resumo:
An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.
Resumo:
The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.
New uniform algorithm to predict reversed phase retention values under different gradient conditions
Resumo:
A new numerical emulation algorithm was established to calculate retention parameters in RP-HPLC with several retention times under different linear or nonlinear binary gradient elution conditions and further predict the retention time under any other binary gradient conditions. A program was written according to this algorithm and nine solutes were used to test the program. The prediction results were excellent. The maximum relative error of predicted retention time was less than 0.45%. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Direct conversion of methane into hydrogen and valuable chemicals under nonoxidative conditions is a process severely limited thermodynamically. However, the movement from the present era of fossil fuels into the coming hydrogen energy age makes it an interesting and important approach compared with the direct conversion of methane under the aid of oxidants. This paper gives a brief overview of the direct conversion of CH4 under nonoxidative conditions. At the same time, our understanding of methane dehydroaromatization over Mo/HZSM-5 catalysts for the simultaneous formation of hydrogen and light aromatics is discussed in general, while the bifunctionality of Mo/HZSM-5 catalysts and the role of carbonaceous deposits formed during the reaction are reviewed in more detail. A perspective of the topic from both academic points of view and potential industrial applications is also presented. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
A high-throughput screening system for secondary catalyst libraries has been developed by incorporation of an 80-pass reactor and a quantified multistream mass spectrometer screening (MSMSS) technique. With a low-melting alloy as the heating medium, a uniform reaction temperature could be obtained in the multistream reactor (maximum temperature differences are less than 1 K at 673 K). Quantification of the results was realized by combination of a gas chromatogram with the MSMSS, which could provide the product selectivities of each catalyst in a heterogeneous catalyst library. Because the catalyst loading of each reaction tube is comparable to that of the conventional microreaction system and because the parallel reactions could be operated under identical conditions (homogeneous temperature, same pressure and WHSV), the reaction results of a promising catalyst selected from the library could be reasonably applied to the further scale-up of the system. The aldol condensation of acetone, with obvious differences in the product distribution over different kind of catalysts, was selected as a model reaction to validate the screening system.