196 resultados para MONOCYTE-DERIVED MACROPHAGES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terbium complexes with benzoic acid and its derivatives o-hydroxybenzoic acid and p-hydroxybenzoic acid were in situ synthesized in sol-gel derived silica matrix via a two-step sol-gel process. The formation process of the complex was characterized by fluorescence spectra, absorption spectra and IR spectra. The gels that contain in situ synthesized complexes exhibit the characteristic emission bands of terbium ion. The fluorescence lifetimes of Tb3+ in the silica gels are longer than those in the pure complexes and in the solutions that contain the corresponding complexes. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sol-gel derived luminescent thin films doped with rare earth (RE) complexes were prepared using an in-situ synthesis method with a two-step hydrolysis process and the luminescence spectra were measured. Fluorescence Lifetime and thermal stability were investigated. The results show that a broad excitation band indicates the formation of RE complexes in the solid thin films. RE ions, which are restrained in a silica matrix, present longer lifetime and higher thermal stability than that in DMF/PVB films containing the corresponding pure complexes. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of conductive vanadium-17-molybdodiphosphate/graphite/methylsilicate composite was firstly prepared by the sol-gel technique and used as electrode material for the fabrication of amperometric hydrogen peroxide sensor. The remarkable advantage of the sensor is its excellent reproducibility of surface renewal by simple mechanical polishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1:12-Silicomolybdic acid (SiMo12) doped carbon ceramic composite electrodes were fabricated by incorporating SiMo12 and graphite powder in a methyltrimethoxysilane-based gel and characterized by cyclic and square-wave voltammetry, It was demonstrated that the chemically modified electrodes were suitable for electrocatalytic reduction of bromate, The electrodes had the remarkable advantage of surface renewal owing to bulk modification, as web as simple preparation, good mechanical and chemical stability and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of silicomolybdate-methylsilicate-graphite composite material was prepared by the sol-gel technique and used for the fabrication of an amperometric nitrite sensor. The silicomolybdic anion acts as a catalyst, the graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry, square-wave voltammetry and chronoamperometry were employed to characterize the sensor. The amperometric nitrite sensor exhibited a series of good properties: high sensitivity (1.771 mu A mmol(-1) dm(3)), a short response time (7 s), remarkable long-term stability and especially reproducibility of surface renewal in the event of electrode surface fouling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4-Hydroxyphthalic anhydride, prepared from 4-chlorophthalic anhydride, was reacted with trimellitic anhydride monoacid chloride or arylene diacid chloride to give aromatic ester-containing dianhydrides (EDAs). These dianhydrides were characterized by element analysis, melt point, FTIR and H-1-NMR. A series of aromatic poly (amic ester acid)s was synthesized by polycondensation of these EDAs and various diamines in polar organic solvent. The inherent viscosity of poly (amic ester acid)s ranged from 0.55 to 0.89 dL/g, indicating the intermediate to higher molecular weight. Polyesterimides having glass transition temperatures between 184-219degreesC were produced by thermal imidization of corresponding poly (amic ester acid)s. These polymers were fairly resistant to organic solvent, but some of them were soluble in phenol solvents. Thermogravimetric analyses revealed that these polyesterimides were stable up to 400degreesC, and the 5% weight loss temperatures were recorded in the range of 432-483degreesC in air atmosphers and 451-490degreesC in nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor for the detection of hydrogen peroxide was described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gave response to hydrogen peroxide in a few seconds with detection limit of 5.0 x 10(-5) M (based on signal:noise = 3). Linear range was upto 0.2 mM. The biosensor exhibited a good stability. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor for the detection of hydrogen peroxide is described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gives response to hydrogen peroxide in a few seconds with detection limit of 5x10(-7) mol (.) L-1 (based on signal : noise=3). Linear range is up to 0.2 mmol (.) L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrogen peroxide biosensor based on sol-gel-derived glasses doped with poly(ester sulfonic acid) Eastman AQ 55D was constructed. Thionine (TH), as a mediator, was incorporated in this matrix by electrostatic force between TH+ and the negatively charged sulfonic acid group in Eastman AQ polymer. Performance and characteristics of the sensor were evaluated with respect to response time, sensitivity and storage stability. The enzyme electrode has a sensitivity of 11.36 muA mM(-1) with a detection limit of 5.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady state current within 20 s. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel sodium sulfonate-functionalized poly(ether ether ketone)s derived from 4,4'-thiodiphenol with degree of sulfonation up to 2.0 were synthesized by nucleophilic polycondensation of various amount of 5,5 '-carbonylbis(2-fluorobenzenesulfonate) (1) and 4,4'-difluorobenzophenone (2) with 4,4'-thiodipheno (3). Component and structure of the polymers were confirmed by TR, NMR and elemental analysis. Wide angle X-ray diffraction patterns indicated an amorphous structure of the polymers. All the polymers showed excellent thermal stability and poor solubility in water. (C) 2001 Elsevier Science Ltd. All rights reserved.