350 resultados para Infrared emission spectra


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Al-doped and B, Al co-doped SiO2 xerogels with Eu2+ ions were prepared only by sol-gel reaction in air without reducing heat-treatment or post-doping. The luminescence characteristics and mechanism of europium doping SiO2 xerogels were studied as a function of the concentration of Al, B, the europium concentration and the host composition. The emission spectra of the Al-doped and B, Al codoped samples all show an efficient emission broad band in the blue violet range. The blue emission of the Al-doped sample was centered at 437 nm, whereas the B, Al co-doped xerogel emission maximum shifted to 423 nm and the intensity became weaker. Concentration quenching effect occurred in both the Al-doped and B, Al co-doped samples, which probably is the result of the transfer of the excitation energy from Eu2+ ions to defects. The highest Eu2+ emission intensity was observed for samples with the Si(OC2H5)(4):C2H5OH:H2O molar ratio of 1:2:4. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The free electron concentration of as-grown liquid encapsulated Czochralski (LEC) InP measured by Hall effect is much higher than the concentration of net donor impurity determined by glow discharge mass spectroscopy. Evidence of the existence of a native donor hydrogen-indium vacancy complex in LEC undoped and Fe-doped InP materials can be observed with infrared absorption spectra. The concentration increase of the donor complex correlates with the increase of ionized deep acceptor iron impurity Fe~(2+) concentration in Fe-doped semi-insulating (SI) InP. These results indicate that the hydrogen-indium vacancy complex is an important donor defect in as-grown LEC InP, and that it has significant influence on the compensation in Fe-doped SI InP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microphotoluminescence (mu-PL) investigation has been performed at room temperature on InAs quantum dot (QD) vertical cavity surface emitting laser (VCSEL) structure in order to characterize the QD epitaxial structure which was designed for 1.3 mu m wave band emission. Actual and precise QD emission spectra including distinct ground state (GS) and excited state (ES) transition peaks are obtained by an edge-excitation and edge-emission (EEEE) mu-PL configuration. Conventional photoluminescence methods for QD-VCSELs structure analysis are compared and discussed, which indicate the EEEE mu-PL is a useful tool to determine the optical features of the QD active region in an as-grown VCSEL structure. Some experimental results have been compared with simulation results obtained with the aid of the plane-wave admittance method. After adjustment of epitaxial growth according to EEEE mu-PL measurement results, QD-VCSEL structure wafer with QD GS transition wavelength of 1300 nm and lasing wavelength of 1301 nm was obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the Hawking radiation of a (4+n)-dimensional Schwarzschild black hole imbedded in space-time with a positive cosmological constant. The greybody and energy emission rates of scalars, fermions, bosons, and gravitons are calculated in the full range of energy. Valuable information on the dimensions and curvature of space-time is revealed. Furthermore, we investigate the entropy radiated and lost by black holes. We find their ratio near 1 in favor of the Bekenstein's conjecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New carbazole-based polymers, which contain various content of electro-active fragments in the main chain connected via alkylene spacers, have been synthesized by Ni(0)-catalyzed Yamamoto-type aryl-aryl coupling reactions. These compounds represent amorphous materials of high thermal stability with glass-transition temperatures of 139-151 degrees C and thermal decomposition starting at temperatures above 400 degrees C. UV-vis absorption and photoluminescence emission spectra of the materials confirmed that the conjugated segments in the macromolecules are rather short.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ligands 4,4,4-trifluoro-1-phenyl-1.3-butanedione (Hbfa) and 1,10-phenanthroline (phen) were used to prepare ternary lanthanide (Ln) complexes [Dy(bfa)(3)phen and Tm(bfa)(3)phen]. Crystal data: Dy(bfa)(3)phen C(42)H(26)FqN(2)O(6)Dy, triclinic, P (1) over bar, a= 9.9450(6) angstrom, b = 14.0944(9) angstrom, c = 14.6043(9) angstrom, alpha = 82.104(1)degrees, beta = 87.006(1)degrees, gamma = 76.490(1)degrees, V = 1971.1(2)angstrom(3), Z = 2; Tm(bfa)(3)phen C42H26F9N2O6Tm, triclinic, P (1) over bar, a = 9.898(5)angstrom, b = 13.918(5)angstrom, c = 14.753(5)angstrom, a = 83.517(5)degrees, alpha = 86.899(5)degrees, gamma = 76.818(5)degrees, V = 1965.3(14)angstrom(3), Z = 2. The coordination number of the central Ln(3+) (Ln = Dy, Tm) ion is eight, with six oxygen atoms from three Hbfa ligands and two nitrogen atoms from the phen ligand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, an electrochemiluminescence (ECL) reagent bis(2,2'-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10]phenanthroline)ruthenium complex (Ru-1) was synthesized, and its electrochemical and ECL properties were characterized. The synthesis of Ru-1 was confirmed by IR spectra, element analysis, and H-1 NMR spectra. For further study, its UV-vis absorption and fluorescence emission spectra were investigated. Ru-1 also exhibited quasi-reversible Ru-II/Ru-III redox waves in acetonitrile solution. The aqueous ECL behaviors of Ru-1 were also studied in the absence and in the presence of tripropylamine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hexagonal and monoclinic LaPO4:Eu3+ nanorods can be selectively synthesized through a simple hydrothermal method by only adjusting the reaction temperature. Hexagonal and monoclinic LaPO4:Eu3+ nanorods can be prepared at 120 and 180 degrees C, respectively. The phase conversion of LaPO4:Eu3+ under different temperatures is investigated in detail. Moreover, the influence of the temperature on the intensity and the shift of the peaks of the excitation and emission spectra is discussed, and the decay lifetime of the Eu3+ ions of the sample obtained at different temperature also have been investigated in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CeF3 and CeF3:Tb3+ nanoparticles were prepared by reverse microemulsion with a functional monomer, methyl methacrylate (MMA), as the oil phase, and CeF3:Tb3+/poly (methyl methacrylate) (PMMA) nanocomposites were obtained via polymerization of the MMA monomer. The nanoparticles and nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), low- and high-resolution transmission electron microscope (TEM), selected-area electron diffraction (SAED), thermogravimetric analysis (TGA), UV/vis transmission spectra, photoluminescence excitation, and emission spectra and luminescence decays. The well-crystallized CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 15 nm. They show the characteristic emission of Ce3+ 5d-4f (313 nm, D-2-F-2(5/2); 323 nm, D-2-F-2(7/2)) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 541 nm as the strongest one) transitions, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LaPO4:Ce3+, Tb3+ nanoparticles were prepared by the reverse microemulsion with functional monomer, methyl methacrylate (MMA) as oil phase, and LaPO4:Ce3+, Tb3+/poly(methyl methacrylate) (PMMA) nanocomposite was obtained via polymerization of MMA monomer. The nanoparticles and nanocomposite have been well characterized by XRD, SEM, TEM, UV/vis spectrum, photoluminescence excitation and emission spectra and luminescence decays. The obtained solid nanocomposite LaPO4:Ce3+, Tb3+/PMMA is highly transparent and exhibits strong green photoluminescence upon UV excitation, due to the integration of luminescent LaPO4:Ce3+, Tb3+ nanoparticles. The luminescent lifetime of Tb3+ is determined to be 1.25 ms in the nanocomposite. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples. SEM and TEM results indicate the as-formed precursor fibers and belts are smooth. and the as-prepared nanofibers and microbelts consist of nanoparticles. The doped rare-earth ions show their characteristic emission under ultraviolet excitation, i.e. Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(j) (J = 6-3) transitions, respectively. The energy transfer process from Ce3+ to Tb3+ in LaPO4:Ce3+, Tb3+ nanofibers was further studied by the time-resolved emission spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we report the effects of the thickness of metal and oxide layers of the Al/WO3/Au interconnecting structure on the electrical and optical characteristics of the and bottom units of the two-unit stacked organic-light-emitting-devices (OLEDs). It is found that light emission performance of the upper unit is sensitive to the transmittance of semitransparent Al/WO3/Au structure, which can be improved by changing the thickness of each layer of the Al/WO3/Au structure. It is important to note that the introduction WO3 between Al and Au significantly enhances the current efficiency of both the upper and bottom units with respect to that of the corresponding Al/Au structure without WO3. In addition, the emission spectra of both the upper and bottom units are narrower than that of the control device due to microcavity effect. Our results indicate that the All WO3/Au interconnecting structure is a good candidate for fabricating independently controllable high efficiency stacked OLEDs.