236 resultados para GSK3-BETA
Resumo:
An efficient and divergent one-pot synthesis of substituted 2H-pyrans, 4H-pyrans and pyridin-2(1H)-ones from beta-oxo amides based on the selection of the reaction conditions is reported. Mediated by N,N,N',N'-tetramethylchloroformamidinium chloride, beta-oxo amides underwent intermolecular cyclizations in the presence of triethylamine at room temperature to give substituted 2H-pyrans in high yields, which could be converted into substituted 4H-pyrans in the presence of sodium hydroxide in ethanol at room temperature, or into substituted pyridin-2(1H)-ones under reflux.
Resumo:
A facile and practical one-pot synthesis of beta-oxo thioamides from beta-oxo amides has been developed. By treatment with isothiocyanates in ethanol in the presence of potassium carbonate, a series of beta-oxo amides was converted, under reflux, in high yields into the corresponding beta-oxo thioamides.
Resumo:
Water-soluble supramolecular inclusion complexes of alpha-, beta-, and gamma-cyclodextrin-bicapped C-60 (CD/C-60) have been investigated for their photoinduced DNA cleavage activities, with the aim to assess the potential health risks of this class of compounds and to understand the effect of host cyclodextrins having different cavity dimensions. Factors such as incubation temperature, irradiation time, and concentration of NADH or CDs/C-60 supramolecular inclusion complexes have been examined. The results show that alpha-, beta-, and gamma-CDs/C-60 are all able to cleave double-stranded DNA under visible light irradiation in the presence of NADH. However, a difference in the photoinduced DNA cleavage efficiency is observed, where the cleavage efficiency increases in the order of alpha-, beta-, and gamma-CD/C-60. The difference is attributed to the different aggregation behavior of the inclusion complexes in aqueous solution, which is correlated to the cavity dimension of the host cyclodextrin molecules.
Resumo:
A notable amount of PP beta-crystal (30%, by X-ray diffraction pattern) has been found in the PP samples as polymerized at normal static isothermal crystallization conditions without using any extra nucleating agents. Existence of catalyst residues in the sample is decisive, which slows down the crystallization rate facilitating the formation of beta-form spherulites. Comparatively, high molecular weight PP favors the formation of beta-form spherulites, deducting from no beta-crystal detected in the degraded samples. Finally, high isotacticity is also required for obtaining qualitative beta-form spherulites, demonstrated by increased beta-crystal content after removal of weak crystalline fraction of the sample.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
The non-covalent complexes between three flavonoid glycosides (quercitrin, hyperoside and rutin) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:1 complexation of each flavonoid glycoside (guest) to the DM-beta-CD (host) was monitored in the negative ion mode by mixing each guest with an up to 30-fold molar excess of the host. The binding constants for all complexes were calculated by a linear equation in the order: DM-beta-CD:quercitrin > DM-beta-CD:rutin > DM-beta-CD:hyperoside. A binding model for the complexes has also been proposed based on the binding constants and tandem mass spectrometric data of these complexes.
Resumo:
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF-MS), in combination with immunoaffinity provided a powerful tool for determining epitope (antigenic determinant) in protein. The linear epitope of the beta(2)-microglobulin was characterized in the paper. The method as follows: at first beta(2)-microglobulin was digested by a proteolytic enzyme to produce an appropriate set of peptide fragments, then peptide fragments containing the linear epitope were selected and separated from the pool of peptide fragments by immunoprecipitation with the monoclonal antibody. The agarose beads were collected carefully after the reaction. Unbound peptides would be washed away, while the peptides containing the epitope would remain bound to the immobilized antibody after. the beads were washed several times with appropriate buffer. At last the masses of the bound peptides were identified directly by MALDI-TOF MS. Using Endoproteinase Glu-C Endoproteinase Lys-C and Trypsin in the experiment, the linear epitope of beta(2)-microglobulin was located within peptide fragment 59-69, that is, DWSFYLLYYTE.
Resumo:
The major protein component of the amyloid deposition in Alzheimer's disease is a 39-43 residue peptide, amyloid beta (A beta). A beta is toxic to neurons, although the mechanism of neurodegeneration is uncertain. Evidence exists for non-B DNA conformation in the hippocampus of Alzheimer's disease brains, and A beta was reportedly able to transform DNA conformation in vitro. In this study, we found that DNA conformation was altered in the presence of A beta, and A beta induced DNA condensation in a time-dependent manner. Furthermore, A beta sheets, serving as condensation nuclei, were crucial for DNA condensation, and Cu2+ and Zn2+ ions inhibited A beta sheet-induced DNA condensation. Our results suggest DNA condensation as a mechanism of A beta toxicity.
Resumo:
The supramolecular self-assembled monolayers (SAMs) of C-60 by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C-60 monoanion. The results indicate that monoanionic C-60 plays a crucial role in the formation of the C-60-containing self-assembled monolayers. The generation of C-60 monoanion and the formation process of C-60 SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C-60 SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C-60 by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C-60. The new C-60 SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C-60 on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C-60 over the thiolated beta-CD SAMs.
Resumo:
The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of (beta-CD)(2)/C-60 in DMF solution is reported. The results show that the trianion of (beta-CD)(2)/C-60 exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the diani on is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be 3.1 x 10(5) M-1 s(-1) by analysis of voltammetric responses under pseudo-first-order conditions with respect to (beta-CD)(2)/C-60. The results suggest that the host beta-cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C-60 toward organic halides.
Resumo:
Herein we report the spectroscopic, electrochemical, TEM and DLS characterizations Of C-60 supramolecular inclusion complexes with alpha-, beta- and gamma-cyclodextrins prepared using anionic C-60. The results indicate that the cyclodextrin itself has little effect on the encapsulated C-60 or on the properties of the inclusion complex. Instead, the cyclodextrin has a significant influence on the aggregation behavior of individual complex in aqueous solution, which in turn affects the property of the supramolecular complex of cyclodextrin and C-60 greatly, As the cavity dimension of cyclodextrin becomes smaller as it changes from gamma-CD to beta-CD, and finally to alpha-CD, it is observed that more aggregation occurs for the corresponding inclusion complex in aqueous solution.
Resumo:
The crystalline modifications alpha and beta of polypropylene (PP) were studied by using polarized light microscopy (PLM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Typically beta crystals surrounded by alpha spherulites were observed at low temperature. With increasing temperature the beta crystals melted and a new crystal appeared. More interestingly, the melting temperature of the new crystal was about 5degrees higher than that of alpha spherulites originally present in the sample formed isothermally. It was assumed that this new crystal was the recrystalline alpha crystal. This assumption was supported by the DSC results. Furthermore, the crystallization kinetics of the PP used was studied on the basis of the traditional Avrami analysis. As a result, the Avrami exponents of crystallization temperature from 120 to 130degreesC ranged between 4.21 and 3.60, indicating that the crystallization mechanism of PP order melt was spherulitic growth and random nucleation.
Resumo:
Wide-angle X-ray diffraction (WAXD) was used to investigate the effects of shear on the crystallization behavior of polypropylene (PP) with beta-nucleating agent. The melt was subjected to shear at the shear rate from 0.5 to 60 s(-1) for 5 s with a CSS450 shear stage. For the PP with low content of the additive, the formation mechanism of the beta crystals is almost the same as that of pure isotactic polypropylene (iPP), viz., shear induces. Otherwise, for the samples with high content of the additive, the formation mechanism of the beta form are nucleating agent induces. The results clearly show that shear restrains the formation of high beta phase for the melt with additive.
Resumo:
The terbium complex supported by beta-diketiminate was synthesized and structurally characterized. Due to an efficient energy transfer from the ligand to the central Tb3+, this complex shows a strong emission corresponding to Tb3+5D4-F-7(J) (J = 6,5,4,3) transitions, with D-5(4)-F-7(5) (550 nm) green emission as the most prominent group. The decay behavior of Tb3+ luminescence depends strongly on the excitation wavelengths.
Resumo:
The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.