414 resultados para Electrode position
Resumo:
Stable electroactive film of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was assembled on indium oxide glass (ITO) successfully, and the cytochrome c was immobilized on the matrix by the electrostatic interactions. The adsorbed cytochrome c showed a good electrochemical activity with a pair of well-defined redox waves in pH 6.2 phosphate buffer solution, and the adsorbed protein showed more faster electron transfer rate (12.9 s(-1)) on the net-works matrix than those of on inorganic porous or even nano-materials reported recently. The immobilized cytochrome c exhibited a good electrocatalytic activity and amperometric response (2 s) for the reduction of hydrogen peroxide (H2O2). The detection limit for H2O2 was 1.5 mu M, and the linear range was from 3 mu M to 1 mM. Poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was proved to be a good matrix for protein immobilization and biosensor preparation.
Resumo:
Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.
Resumo:
A novel "gold electrode-molecular wires-silver" junction was facilely fabricated for electrochemical study on the electron transportation through molecular wires. Rapid electron transportation through this sandwich-like structure was indeed observed by cyclic voltammograms and ac impedance measurements. Since rather reproducible and reliable results are easily available by electrochemical techniques, it would be an efficient and reliable test bed for electrochemical investigation of charge transportation through molecular wires in self-assembled monolayers on electrodes.
Resumo:
The synthesis and characterization of catalysts based on bimetallic materials, Pt-Fe supported on multi-walled carbon nanotubes (MWNTs) for methanol electrooxidation is reported here. The catalyst was prepared by a spray-cooling process and characterized by TEM, EDS, ICP and XRD. The electrocatalytic properties of the Pt-Fe/MWNTs electrode for methanol oxidation have been investigated by cyclic voltammetry and chronoamperometry. It presented higher electrocatalytic activity and stability than a comparative Pt/ MWNTs catalyst. This may be attributed to the addition of Fe which leads to the small average particle size and high utilization of Pt in the Pt-Fe/MWNTs catalyst. The results imply that the Pt Fe/MWNTs composite has good potential applications in fuel cells.
Resumo:
In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.
Resumo:
Aristolochic acids (AAs) are the main bioactive ingredients in the most of Aristolochia plants, which are used to make dietary supplements, slimming pills and Traditional Chinese Medicines (TCMs). Excessive ingestion of AAs can lead to serious nephropathy. Therefore, quantitative analysis and quality control for the plants containing AAs is of great importance. In this paper, capillary electrophoresis (CE) with electrochemical detection (ED) at a 33 mu m carbon fiber microdisk electrode (CFE) has been applied to detect AA-I and AA-II in Aristolochia plants. Under the optimum conditions: detection potential at 1.20 V, 2.0 x 10(-2) mol L-1 phosphate buffer solution (PBS) (pH 10.0), injection time 25 s at a height of 17 cm and separation voltage at 12.5 kV, the AA-I and AA-II were baseline separated within 5 min. Low detection limits for AA-I and AA-II were 4.0 x 10(-8) mol L-1 and 1.0 x 10(-7) mol L-1, respectively. Wide linear ranges were from 4.0 x 10(-8) mol L-1 to 1.9 x 10(-5) mol L-1 and 1.0 X 10(-7) mol L-1 to 5.0 x 10(-5) mol L-1 for AA-I and AA-II, respectively. The proposed method has been successfully applied to analyze AAs contents in plant extracts. The results indicated that the contents of AAs in each part of Aristolochia debilis Sieb. Et Zucc.
Resumo:
A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.
Resumo:
The effect of metal cations in solution on the oxidation of methanol on the electrode surface of platinum is a neglected aspect to direct methanol fuel cell (DMFC). In this paper, a smooth platinum electrode absorbing metal cations as the working electrode was applied to investigate the methanol oxidation with the cyclic voltammetry (CV) in 1.0 mol L-1 H2SO4. From the analysis of experiment, it is found that the cations, Li+, Ce4+, Mn2+, Ni2+, Cu2+, have some negative effect on the catalytic oxidation of methanol on the surface of platinum. The degree of the effect from different cations was analyzed.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1 M KCl aqueous Solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)(6)(3-) in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal group's charge state, based on which the surface pK(a) values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.
Resumo:
The microstructure and electrochemical performance of Ti0.17Zr0.08V0.34Pd0.01Cr0.1Ni0.3 electrode alloy have been investigated using X-ray diffraction, field emission scanning electron microscopy-energy dispersive spectroscopy, inductively coupled plasma and electrochemical impedance spectroscopy. The alloy electrode has a higher discharge capacity than an AB(5) type alloy within a wider temperature span. The increase of the charge-transfer-resistances, and the dissolutions of V and Zr were responsible for the performance degradation of the alloy electrode.
Resumo:
The electrochemistry and electrogenerated chemilurninescence (ECL) of tris(2,2-bipyridyl)ruthenium(II) ion-exchanged in Eastman-AQ-carbon nanotube (CNT) composite films were investigated at a glassy carbon (GC) electrode. Eastman-AQ55D is a poly (ester sulfonic acid) cation exchanger available in a commercial dissolved form. It is much more hydrophilic than Nafion due to its unique structure, so Ru(bpy)(3)(2+) does not diffuse into the hydrophobic region where it may lose its electroactivity as that in Nafion. The interfused CNT could act as electronic wires that connect the electrode with Ru(bpy)(3)(2+), which made the composite film much more electronically which finally led to the increasing of Ru(bpy)(3)(2+) conductive. Besides, the negatively charged CNT could also absorb some Ru(bpy)(3)(2+). Moreover, the strong electrostatic interaction between AQ and Ru(bpy)(3)(2+) made the composite films much more stable. The combination of AQ and CNT brings excellent sensitivity with the detection limit as low as 3 x 10(-11) M for TPA.
Resumo:
The electrochemical properties of the Ti0.17Zr0.08V0.35Cr0.10Ni0.30 alloy electrode were investigated. This alloy has good cycle life at 303 K, 313 K, and even at 323 K, but the discharge capacity decreases gradually at 333 K with increasing cycle number. Both the charge-discharge efficiency and the charge-discharge voltage reduce. The electrochemical impendence spectra indicate that the charge-transfer resistance decreases while the exchange current density increases as temperature increases. The apparent activation energy of the charge-transfer reaction is about 50 kJ mol(-1), which is higher than that on the AB(5) type alloy electrode.
Resumo:
Gold nanoparticles capped by 4-ferrocene thiophenol with an average core size of 2.5 nm and surface plasmon absorbance at 522 nm were place-exchanged with 1,8-octanedithiol, and then self-assembled onto the gold electrode via tail SH group. The self-assembly was characterized by X-ray photoelectron spectroscopy. Cyclic voltammograms examined the coverage fraction of the self-assembled monolayers of the electroactive gold nanoparticles and the formal potential of the indicated SAMs. Further experiments exhibited that the electrode process was controlled by surface confined faradic reactions.
Resumo:
The target DNA was immobilized successfully on gold colloid particles associated with a cysteamine monolayer on gold electrode surface. Self-assembly of colloidal An onto a cysteamine modified gold electrode can enlarge the electrode surface area and enhance greatly the amount of immobilized single stranded DNA (ssDNA). The electrontransfer processes of [Fe(CN)(6)](4)-/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of the target DNA immobilization, which was investigated by impedance spectroscopy. Then single stranded target DNA immobilized on the gold electrode hybridized with the silver nanoparticle-oligonucleotide DNA probe, followed by the release of the silver metal atoms anchored on the hybrids by oxidative metal dissolution, and the indirect determination of the released solubilized Ag-1 ions by anodic stripping voltammetry (ASV) at a carbon fiber microelectrode. The results show that this method has good correlation for DNA detection in the range of 10-800 pmol/1 and allows the detection level as low as 5 pmol/1 of the target oligonucleotides.
Resumo:
Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.