152 resultados para Bifurcation diagram


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is based on the research project of Study on the Geological Characteristics and Remaining Oil Distribution Law of Neogene Reservoirs in Liunan Area, which is one of the key research projects set by PetroChina Jidong Oilfield Company in 2006. The determination of remaining oil distribution and its saturation changes are the most important research contents for the development and production modification of oilfields in high water-cut phases. Liunan oilfield, located in Tangshan of Hebei Province geographically and in Gaoliu structural belt of Nanpu sag in Bohai Bay Basin structurally, is one of the earliest fields put into production of Jidong oilfield. Focusing on the development problems encountered during the production of the field, this thesis establishes the fine geological reservoir model through the study of reservoir properties such as fine beds correlation, sedimentary facies, micro structures, micro reservoir architecture, flow units and fluid properties. Using routine method of reservoir engineering and technology of reservoir numerical modeling, remaining oil distribution in the target beds of Liunan area is predicted successfully, while the controling factors of remaining oil distribution are illustrated, and the model of remaining oil distribution for fault-block structure reservoirs is established. Using staged-subdivision reservoir correlation and FZI study, the Strata in Liunan Area is subdivided step by step; oil sand body data-list is recompiled; diagram databases are established; plane and section configuration of monolayer sandstone body, and combination pattern of sandstone bodys are summarized. The study of multi-level staged subdivision for sedimentary micro-facies shows that the Lower member of Minghuazhen formation and the whole Guantao formation in Liunan Area belong to meandering river and braided river sedimentary facies respectively, including 8 micro facies such as after point bar, channel bar, channel, natural levee, crevasse splay, abandoned channel, flood plain and flood basin. Fine 3D geological modeling is performed through the application of advanced software and integration of geological, seismic logging and reservoir engineering data. High resolution numerical simulation is performed with a reserve fitting error less than 3%, an average pressure fitting fluctuation range lower than 2Mpa and an accumulate water cut fitting error less than 5%. In this way, the distribution law of the target reservoir in the study area is basically recognized. Eight major remaining oil distribution models are established after analysis of production status and production features in different blocks and different layers. In addition, fuzzy mathematics method is used to the integreted evaluation and prediction of abundant remaining oil accumulation area in major production beds and key sedimentary time units of the shallow strata in Liunan Area and corresponding modification comments are put forward. In summary, the establishment of fine reservoir geological model, reservoir numerical simulation and distribution prediction of remaining oil make a sound foundation for further stimulation of oilfield development performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Xinli mine area of Sanshandao mine is adjacent to the Bohai Sea and its main exploitable ore deposit occurs in the undersea rock mass. The mine is the biggest undersea gold mine of China after production. The mine area faces a latent danger of water bursting, even sudden seawater inrush. There is no mature experience in undersea mining in China so far. The vein ore deposit is located in the lower wall of a fault; its possible groundwater sources mainly include bittern, Quaternary pore water and modern seawater. To ensure the safety of undersea mining, to survey the flooding conditions of the ore deposit using proper measures and study the potential seawater inrush pattern are the key technical problems. With the Xinli mine area as a case study, the engineering geological conditions of the Xinli mine area are surveyed in situ, the regional structural pattern and rock mass framework characteristics are found out, the distribution of the structural planes are modeled by a Monte Carlo method and the connectivity coefficients of rock mass structural planes are calculated. The regional hydro-geological conditions are analyzed and the in-situ hydro-geological investigation and sampling are performed in detail, the hydrochemistry and isotopes testing and groundwater dynamic monitoring are conducted, the recharge, runoff, discharge conditions are specified and the sources of flooding are distinguished. Some indices are selected from the testing results to calculate the proportion of each source in some water discharge points and in the whole water discharge of the Xinli mine area. The temporal and spatial variations of each water source of the whole ore deposit flooding are analyzed. According to the special project conditions in the Xinli mine area, the permeability coefficient tensors of the rock mass in Xinli mine area are calculated based on a fracture geometry measurement method, in terms of the connectivity and a few hydraulic testing results, a modified synthetic permeability coefficient are calculated. The hydro-geological conceptual and mathematical model are established,the water yield of mine is predicted using Visual Modflow code. The spreading law of surrounding rock mass deformation and secondary stress are studied by numerical analysis; the intrinsic mechanism of the faults slip caused by the excavation of ore deposit is analyzed. The results show that the development of surrounding rock mass deformation and secondary stress of vein ore deposit in the lower wall of a fault, is different from that in a thick-big ore deposit. The secondary stress caused by the excavation of vein ore deposit in the lower wall of a fault, is mainly distributed in the upper wall of the fault, one surface subsidence center will occur. The influences of fault on the rock mass movement, secondary stress and hydro-geological structures are analyzed; the secondary stress is blocked by the fault and the tensile stress concentration occurs in the rock mass near the fault, the original water blocking structure is destructed and the permeable structure is reconstructed, the primary structural planes begin to expand and newborn fissures occur, so the permeability of the original permeable structure is greatly enhanced, so the water bursting will probably occur. Based on this knowledge, the possible water inrush pattern and position of the Xinli mine area are predicted. Some computer programs are developed using object-oriented design method under the development platform Visual Studio.Net. These programs include a Monte Carlo simulation procedure, a joint diagrammatizing procedure, a structural planes connectivity coefficient calculating procedure, a permeability tensor calculating procedure, a water chemical formula edit and water source fixture conditions calculating procedure. A new computer mapping algorithm of joint iso-density diagram is raised. Based on the powerful spatial data management and icon functions of Geographic Information System, the pit water discharge dynamic monitoring data management information systems are established with ArcView.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term variations in the strength of the geomagnetic field provide important constraints on the chemical-physical processes of the Earth’s interior. Especially, the intensity of the geomagnetic field during the Cretaceous normal superchron (CNS) is crucial to understand the geodynamo. But a paucity of paleointensity further limits to obtain essential knowledge interior process in the deep earth. In order to improve the experimental efficiency, this study tried to apply two new rock magnetic methods (FORC diagram and low-temperature demagnetization technique) to determine the paleointensity. First, some problems in the theory and technique in paleointensity experiments were introduced. A combined palaeomagnetic and geochronologic study was further conducted on a basaltic lava sequence at Jianchang in Liaoning Province, northeastern China. Radiometric 40Ar/39Ar dating indicates that the volcanism occurred at about 119 Ma within the marine anomaly C34n in Cretaceous normal superchron (CNS). Rock magnetic investigations show that pseudo-single domain (PSD) titanium-poor titanomagnetite is dominant in the studied lava flows. Both stepwise thermal and alternating field demagnetizations isolate the well-defined normal characteristic remanent magnetization (ChRM) in three independent lava flows with a mean direction of D/I = 6.0/51.9 degree(a95 = 12.3degree). Palaeointensity was determined using the modified Thellier method with systematic partial thermoremanent magnetization (pTRM) checks on total 72 samples, but only 10 samples exhibit ideal linear behavior on the Arai-plot in the temperature interval of 300-560 C and yield an average paleointensity of (25.8+/-1.4)uT. In addition, slopes of the line defined by the initial and the final points on the Arai-plot for the other 18 samples with characteristic PSD features give an average paleointensity estimation value of (24.8+/-1.9)uT. The consistency of these two approaches confidently demonstrates the fidelity of our results. The overall mean field strength determined using both approaches are thus estimated to be (25.2+/-0.7 )uT. This value corresponds to the virtual dipole magnetic moments (VDM) of (4.5+/-0.1)E22 Am^2, which is about half of the value of present field. This finding suggests that palaeointensity just at the onset of the CNS is characterized by a weak magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluvio-lacustrine sequence in the Nihewan Basin is an important archive of late Pliocene-Pleistocene climate and environment changes in temperate northern China, which provides excellent sources of early human settlements in high latitude East Asia. The recent years have witnessed a considerable progress in the paleomagnetic dating of its stratigraphy, which has notably increased our understanding of a series of important issues such as the early human occupation in the Old World, the infilling history of the Nihewan Basin, and the chronological sequence of the Nihewan faunas. Up to now, the long-term paleoenvironmental changes directly retrieved from this basin, which might influence the evolution and expansion of early humans in the Nihewan Basin, are still poorly constrained, although several paleoclimatic records have been retrieved from this area. In this study, a combined mineral-magnetic and geochemical investigation was carried out on the fluvio-lacustrine sequence from the Dachangliang section at the eastern margin of the basin in order to reveal its rock magnetic and environmental magnetic characteristics and its implications for early human evolution in East Asia. The major findings and conclusions are listed as the following: First, there is an increased cooling coupled with an intensified aridification recorded in the fluvio-lacustrine sequence of the Dachangliang section. The cooling is related to an up-section decrease in propensity to chemical weathering as inferred from an increase in low-field susceptibility after cycling to 700 °C. Close to 700 °C, reacting chlorite is providing the iron source for newly formed very fine-grained ferrimagnetic minerals which enhances the susceptibility signal. The reactivity of chlorite after annealing at temperatures above 600 °C is documented with X-ray diffraction. Second, degrees of chemical weathering in the Nihewan Basin are further estimated by clay mineralogy (i.e. chlorite and illite contents and chlorite/illite ratio) and a series of major element proxies (i.e. Na2O/Al2O3 versus K2O/Al2O3 diagram, Al2O3-(CaO + Na2O)-K2O ternary diagram (A-CN-K), chemical index of alteration (CIA), (CaO + Na2O + MgO)/TiO2, (CaO + Na2O + MgO + K2O)/(TiO2 + Al2O3), CaO/Al2O3 and CaO/TiO2). The up-section decrease in propensity to chemical weathering suggested by the aforementioned rock mangetic measurement is further confirmed by these geochemical analyses. Combining the chemical weathering records from the Nihewan Basin, Chinese Loess Plateau, South China Sea and eastern China, we find that the consecutive decreasing trend in chemical weathering intensity during the late Cenozoic is ubiquitous across China. This pattern may result from a long-term decreasing East Asian summer monsoon and increasing East Asian winter monsoon, and thus a consecutive increasing of aridification and cooling in Asia during the Quaternary. Furthermore, the chemical weathering intensity increased from South China to North China during the Quaternary, in line with the decreasing East Asian summer monsoon and increasing East Asian winter monsoon and thus the gradually intensified aridification and cooling from South China to North China. Third, a combined mineral-magnetic and geochemical investigation provides evidences that the large-amplitude alterations of concentration of magnetic minerals mainly result from preservation/dissolution cycles of detrital magnetic minerals in alternately oxic and anoxic depositional environments. The preservation/dissolution model implies that the high-magnetic and low-magnetic cycles of this sedimentary sequence represent glacial and interglacial climate cycles, respectively. This contribute significnatly to our understanding of the link between climate and magnetic properties. Finally, the paleoclimatic implications of these rock magnetic and geochemical characteristics significantly increase our understanding of the general setting of early humans in high northern latitude in East Asia. We propose that the cold and dry climate may have contributed significantly to the expansion and adaptation of early humans, rather than bringing hardship, as is often thought. The relationship between magnetic properties and climate possibly provides valuable information on the climatic context of the Paleolithic sites in the basin, especially whether the occupation occurred during an interglacial or glacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eastern Himalayan Syntaxis (EHS) is one of the strongest deformation area along the Himalayan belt resulted from the collision between Indian plate and the Eurasian Plate since the 50~60Ma, and has sensitivity tracked and preserved the whole collisional processes. It should depend on the detail geological investigations to establish the deformational accommodate mode, and the uplift history, to elucidate the deep structure and the crust-mantle interaction of the Tibet Plateau of the EHS. The deep-seated (Main Mantle Thrusts) structures were exhumed in the EHS. The MMT juxtapose the Gangdese metamorphic basement and some relic of Gangdese mantle on the high Himalayan crystalline series. The Namjagbawa group which is 1200~1500Ma dated by U/Pb age of zircon and the Namla group which is 550Ma dated by U/Pb age of zircon is belong to High Himalayan crystalline series and Gangdese basement respectively. There is some ophiolitic relic along the MMT, such as metamorphic ocean mantle peridotite and metamorphic tholeiite of the upper part of ocean-crust. The metamorphic ocean mantle peridotites (spinel-orthopyroxene peridotite) show U type REE patterns. The ~(87)Sr/~(86)Sr ratios were, 0.709314~0.720788, and the ~(143)Nd/~(144)Nd ratios were 0.512073~0.512395, plotting in the forth quadrant on the ~(87)Sr/~(86)Sr-~(143)Nd/~(144)Nd isotope diagram. Some metamorphic basalt (garnet amphibolite) enclosures have been found in the HP garnet-kynite granulite. The garnet amphibolites can be divided two groups, the first group is deplete of LREE, and the second group is flat or rich LREE, and their ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd ratios were 0.70563~0.705381 and 0.512468~0.51263 respectively. Trace element and isotopic characteristics of the garnet amphibolites display that they formed in the E-MORB environment. Some phlogolite amphibole harzburgites, which exhibit extensive replacement by Phl, Amp, Tc and Dol etc, were exhumed along the MMT. The Phl-Amp harzburgites are rich in LREE and LILE, such as Rb, K etc, and depletes Eu (Eu~* = 0.36 ~ 0.68) and HFSE, such as Nb, Ta, Zr, Hf, P, Ti etc. The trace element indicate that the Phl-Amp harzburgites have island arc signature. Their ~(87)Sr/~(86)Sr are varied from 0.708912 to 0.879839, ~(143)Nd/~(144)Nd from 0.511993 to 0.512164, ε Nd from- 9.2 to - 12.6. Rb/Sr isochrone age of the phlogolite amphibole harzburgite shows the metasomatism took place at 41Ma, and the Amp ~(40)Ar/~(39)Ar cooling age indcate the Phl-Amp harzburgite raising at 16Ma. There is an intense crust shortening resulted from the thrust faults and folds in the Cayu block which is shortened more 120km than that of the Lasha block in 35~90Ma. With the NE corner of the India plate squash into the Gangdese arc, the sinistral Pai shear fault and the dextral Aniqiao shear fault on the both sides of the Great bent of Yalun Zangbu river come into active in 21~26Ma. On the other hand, the right-lateral Gongrigabu strike-slip faults come into activity at the same period, a lower age bound for the Gongrigabu strike-slip fault is estimated to be 23~24Ma from zircon of ion-probe U/Pb thermochronology. The Gongrigabu strike-slip faults connect with the Lhari strike-slip fault in the northwestern direction and with the Saganing strike-slip at the southeastern direction. Another important structure in the EHS is the Gangdese detachment fault system (GDS) which occurs between the sedimental cover and the metamorphic basement. The lower age of the GDS is to be 16Ma from the preliminary 40Ar/39Ar thermochronology of white mica. The GDS is thought to be related to the reverse of the subducted Indian crust and the fast uplift of the EHS. Structural and thermochronology investigation of the EHS suggest that the eastern Tibet and the western Yunnan rotated clockwise around the EHS in the period of 35~60Ma. Later, the large-scale strike-slip faults (RRD, Gaoligong and Saganing fault) prolongate into the EHS, and connect with the Guyu fault and Gongrigabu fault, which suggest that the Indianchia block escape along these faults. Two kind of magmatic rocks in the EHS have been investigated, one is the mantle-derived amphibole gabbro, dioposide diorite and amphibole diorite, another is crust origin biotit-garnet adamellite, biotit-garnet granodiorite and garnet-amphibole-biotite granite. The amphibole gabbro dioposite diorite and amphibole diorite are rich in LREE, and LILE, such as Ba, Rb, Th, K, Sr etc, depleted in HFSE, such as Nb, Ta, Zr, Hf, Ti etc. The ratio of ~(87)Sr/~(86)Sr are from 0.7044 to 0.7048, ~(143)Nd/~(144)Nd are from 0.5126 to 0.5127. The age of the mantle origin magamatic rocks, which result from the partial melt of the raising and decompression anthenosphere, is 8Ma by ~(40)Ar/~(39)Ar dating of amphibole from the diorite. The later crust origin biotite-garnet adamellite, biotite-garnet granodiorite and garnet-amphibole-biotite granite are characterized by aboudance in LREE, and strong depletion of Eu. The ratios of ~(87)Sr-~(86)Sr are from 0.795035 to 0.812028, ~(143)Nd/~(144)Nd from 0.51187 to 0.511901. The ~(40)Ar/~(39)Ar plateau age of the amphibole from the garnet-amphibole-biotite granite is 17.5±0.3Ma, and the isochrone age is 16.8±0.6Ma. Their geochemical characteristics show that the crust-derived magmatic rocks formed from partial melting of the lower curst in the post-collisional environment. A group of high-pressure kaynite-garnet granulites and enclave of high-pressure garnet-clinopyroxene grnulites and calc-silicate grnulites are outcroped along the MMT. The peak metamorphic condition of the high-pressure granulites yields T=800~960 ℃, P=1.4~1.8Gpa, corresponding the condition of 60km depth. The retrograde assemblages of the high-pressure grnulites occur at the condition of T=772.3~803.3 ℃, P=0.63~0.64Gpa. The age of the peak metamorphic assemblages are 45 ~ 69Ma indicated by the zircon U/Pb ion-plobe thermochronology, and the retrograde assemblage ages are 13~26Ma by U/Pb, ~(40)Ar/~(39)Ar thermochronology. The ITD paths of the high-pressure granulites show that they were generated during the tectonic thickening and more rapid tectonic exhumation caused by the subducting of the Indian plate and subsequent break-off of the subducted slab. A great deal of apatite, zircon and sphene fission-track ages, isotopic thermochronology of the rocks in the EHS show that its rapid raising processes of the EHS can be divided into three main periods. There are 35~60Ma, 13~25Ma, 0~3Ma. 3Ma is a turn in the course of raising in the EHS which is characterized by abruptly acceleration of uplifting. The uplift ratios are lower than 1mm .a~(-1) before 3Ma, and higher than 1mm .a~(-1) with a maximum ratio of 30mm .a~(-1) since 3Ma. The bottom (knick point) of the partial anneal belt is 3.8km above sea level in the EHS, and correspond to age of 3Ma determined by fission-track age of apatite. The average uplift ratio is about 1.4 mm .a~(-1) below the knick point. The EHS has raised 4.3km from the surface of 2.36km above sea level since 3Ma estimated by the fossil partial anneal belt of the EHS. We propose a two-stage subduction model (B+A model) basing on Structural, thermochronological, magmatical, metamorphic and geophysical investigations of the EHS. The first stage is the subduction of the Indian continental margin following after the subduction of the Tethys Ocean crust and subsequent collision with the Gangdese arc, and the second stage is the Indian crust injecting into the lower crust and upper mantle of the Tibet plateau. Slab break-off seems to be occurred between these two stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directed by the theory of "Collision Tectonic Facies", the tectonic setting and dynamic mechanism of the formation of Songliao basin in late Mesozoic (J_3-K_1) are studied in the present thesis with the methods of petrology, petrochemistry, geochemistry and isotopic geochronology. The research contents in this paper include as followings. Firstly, the general tectonic frame is made up of different tectonic facies formed from Mid-late Proterozoic to Mesozoic, which are Huabei plate, the Chengde-Siziwangqi melange (Pz_1), the Wenduermiao magmatic arc (Pz_1), the Hegenshan-Chaogenshan melange (Pz_2), the accretion arec (Pz_1-P), the Raohe-Hulin melange (Mz), the magmatic arc (Mz) and the pull-apart basin on the magmatic arc (Mz). Secondly, the volcanic rock assemblages of Songliao basin and its adjacent area in late Mesozoic is the typical calc-alkaline of the magmatic arc. The types of volcanic rocks in the study area include basalts, basaltic andesites, andesites, dacites and rhyolites, and basic-intermediate volcanic rocks have higher alkalinity. The volcanic rock series in this area is the high-K calc-alkaline series. Thirdly, the total REE of volcanic rocks in Songliao basin and its adjacent area is higher than that of the chondrite. The pattern of the REE normalized by the chondrite shows the characteristics similar to that of the typical island arcs or the active continental margins in the earth, that is enrichment of LREE and depletion of Eu. The spider-diagram of the trace element normalized by the primitive mantle also expresses the similar features to that of the typical island arcs or the active continental margins, it has distinctive valleies of Nb, Ta, Sr, P, and Ti, as well as the peaks of La, Ce, Th, U, and K. The incompatible elements show that the high field strength elements, such as Nb, Ta, Ti, and P, are depletion while the low field strength elements, such as K, U, Pb, and Ba, are enrichment. These features are similar to those of orogenic volcanic rocks and imply the formation of the volcanic rocks in this area is related to the subduction. The degrees of both the enrichment of the HFS elements and depletion of the LFS elements become more obvious from basic to acid volcanic rocks, which suggests crustal contamination enhances with the magmatic crystallization and fractionation. The concentration of the compatible elements is W-shape, and anomalies in Cr and Ni suggest there is the contamination during the magmatic crystallization and fractionation. Fourthly, the isotopic age data prove the volcanic activity in the Songliao basin and its adjacent area started in the early-middle Jurassic, and ended in the end of the early Cretaceous-the beginning of the Cretaceous. The volcanism summit was the late Jurassic-the early Cretaceous (100 - 150Ma). Finally, the tectonic setting of volcanism in the late Mesozoic was magmatic arc, which originated the subduction of Raohe-Hulin trench to the northwest Asian plate. The subduction began in the middle Jurassic, and the collision orogenesis between the Sikhote-Alin arc and Asian continent was completed in the end of the early Cretaceous-the beginning of the late Cretaceous. The results of above tectonic processes were finally to format Nadanhada orogenic belt symbolized by the Raohe-Hulin suture or melange belt. The violently oblique movement of the Izanagi plate toward Asian plate in the late Mesozoic was the dynamic mechanism of above tectonic processes. At the same tome, the left-lateral strike-slip shear caused by the oblique movement of the Izanagi plate produced a series of strike-slip faults in east Asian margin, and the large scale displacements of these strike-slip faults then produced the pull-apart basing or grabens on the magmatic arc. Conclusively, the tectonic setting during the formation of the grabens of Songliao basin in the late Mesozoic was magmatic arc, and its dynamic mechanism was the pull-apart. In a word, there was a good coupling relation among the oblique subduction of the oceanic plate, collisional orogene between island arc and continental plate, strike-slip shear of the faults and the formation of the grabens in Songliao basin and its adjacent area in late Mesozoic. These tectonic processes were completed in the unoin dynamic setting and mechanism as above description.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The past two decades have witnessed an unprecedented growth of interest in the palaeoenvironmental significance of the Pleistocene loess deposits in northern China. However, it is only several years ago that the Tertiary red clay sequence underlying Pleistocene loess attracted much attention. One of the major advances in recent studies of eolian deposits on the Loess Plateau is the verification of the eolian origin for the Tertiary red clay sediments. The evidence of the eolian origin for the red clay is mainly from geochemical and sedimentological studies. However, sedimentological studies of the red clay deposits are still few compared with those of the overlying loess sediments. To date, the red clay sections located near Xifeng, Baoji, Lantian, Jiaxian, and Lingtai have been studied, with an emphasis on magnetostratigraphy. These sections have a basal age ranging from ~4.3 Ma to ~7.0 Ma. The thickness of the sections varies significantly, depending perhaps on the development of local geomorphological conditions and the drainage system. Although the stratigraphy of the red clay sections has been recorded in some detail, correlation of the red clay sequences has not yet been undertaken. Geological records (Sun J. et al., 1998) have shown that during glacial periods of the Quaternary the deserts in northem China were greatly expanded compared with modern desert distribution. During interglacial periods, desert areas contracted and retreated mostly to northwestern China because of the increase in inland penetration of monsoonal precipitation. According to pedogenic characteristics of the red clay deposits, the climatic conditions of the Loess Plateau is warmer and wetter generally in the Neogene than in the late Pleistocene. Panicle analyses show that grain size distribution of the red clay sequence is similar to that of the paleosols in the Pleistocene loess record, thus implying a relatively remote provenance of the red clay materials. However, the quantitative or semiquantitative estimates of the distance from the source region to the Loess Plateau during the red clay development remains to be investigated. In this study, magnetostratigraphic and sedimentological studies are conducted at two thick red clay sequences-Jingchuan and Lingtai section. The objectives of these studies are focused on further sedimentological evidence for the eolian origin of the red clay, correlation of red clay sequences, provenance of the red clay, and the palaeoclimate reconstruction in the Neogene. Paleomagnetic studies show that the Jingchuan red clay has a basal age of 8.0 Ma, which is 1 million years older than the previously studied Lingtai section. The Lingtai red clay sequence was divided into five units on the basis of pedogenica characteristics (Ding et al., 1999a). The Jingchuan red clay sequence, however, can be lithologically divided into six units according to field observations. The upper five units of the Jingchuan red clay can generally correlate well with the five units of the Lingtai red clay. Comparison of magnetic susceptibility and color reflectance records of four red clay sections suggests that the Lingtai red clay sequence can be the type-section of the Neogene red clay deposits in northern China. Pleistocene loess and modem dust deposits have a unimodal grain-size distribution. The red clay sediments at Jingchuan and Lingtai also have a unimodal grain-size distribution especially similar to the paleosols in the Pleistocene loess record. Sedimentological studies of a north-south transect of loess deposits above S2 on the Loess Plateau show that loess deposits had distinct temporal and spatial sedimentary differentiation. The characteristics of such sedimentary differentiation can be well presented in a triangular diagram of normalized median grain size, normalized skewness, and normalized kurtosis. The triangular diagrams of the red clay-loess sequence at Lingtai and Jingchuan indicate that loess-paleosol-red clay may be transported and sorted by the same agent wind, thus extending the eolian record in the Loess Plateau from 2.6 Ma back to about 8.0 Ma. It has been recognized that during the last glacial maximum (LGM) the deserts in northern China had a distribution similar to the present, whereas during the Holocene Optimum the deserts retreated to the area west of the Helan Mountains. Advance-retreat cycles of the deserts will lead to changes in the distance of the Loess Plateau to the dust source regions, thereby controlling changes in grain size of the loess deposited in a specific site. To observe spatial changes in sedimentological characteristics of loess during the last glacial-interglacial cycle, the texture of loess was measured along the north-south transect of the Loess Plateau. Since the southern margin of the Mu Us desert during the LGM is already known, several models of grain size parameters versus the minimum distance from the source region to depositional areas were developed. According to these semiquantitative models, the minimum distance from the source region to Lingtai and Jingchuan areas is about 600 km during the Neogene. Therefore the estimated provenance of the Tertiary red clay deposits is the areas now occupied by the Badain Jaran desert and arid regions west of it. The ratio of the free iron to total iron concentration attests to being a good proxy indicator for the summer monsoon evolution. The Lingtai Fe_20_3 ratio record shows high values over three time intervals: 4.8-4.1 Ma, 3.4-2.6 Ma, and during the interglacial periods of the past 0.5 Ma. The increase in summer monsoon intensity over the three intervals also coincides with the well-developed soil characteristics. It is therefore concluded that the East-Asia summer monsoon has experienced a non-linear evolution since the late Miocene. In general, the East Asia summer monsoon was stronger in Neogene than in Quaternary and the strongest East Asia summer monsoon may occur between 4.1 and 4.8 Ma. The relatively small ice volume and high global temperature may be responsible for the strong summer monsoon during the early Pliocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to know better about the Phanerozoic lithosphere thinning process of Sino-Korea Plate, four Cretaceous intrusion complexes and their ultramafic xenoliths are investigated by this thesis, which are located in Laiwu, Shandong Province, Eastern China, a region far away from plate margin. The four complexes, Kuanshan, Jiaoyu, Jingniushan and Tietonggou, intruded into Archaeozoic granite gneiss and Paleozoic carbonate rocks with scam iron ore at their contact zone. The four complexes can be divided into two magma series, abyssal rocks for the early and hypabyssal rocks for the later. K-Ar dating show that the abyssal rocks intrusion began with 120 ±2 Ma and the hypabyssal rocks intruded about 113 Ma. Abyssal rocks, mainly made up of augite diorites, amphibole diorites and gabbros for the lesser, are chemically characterized with high-Mg (Mg#>0.5) high-K calcalklic rock, which are depleted with Nb, Ta and Ti related to LILE and extremely enriched with Sr and Pb. Comparatively, augite diorites are the most LREE enriched in abyssal rocks, and they show no Eu abnorrnity or weak positive Eu abnormity. Gabbros show the least LREE enrichment with a strong Eu abnormity relatively. In (~(87)Sr/~(86)Sr)_1 -ε Nd(T) diagram, the abyssal rocks show a mixing trend , a rapid change in ε Nd(T) with a relatively small change in (~(87)Sr/~(86)Sr)_1. Low radiogenic Sr and Pb composition with high radiogeic Nd composition indicate that the mixing processes happened in lower crust Melt-rock interactions in lower crust might be the most possible processes to produce these high-Mg and high-K calcalklic magmas. Hypabyssal rocks, mainly made up of granite porphyry and dioritic porphrite, show much higher ε Nd(T) than abyssal rocks. Granite porphyry are distinct with an adakite geochemical characteristics, high (La/Yb)_N, Sr/Y and low Rb/Sr ratio. The adakitic granite porphyry indicates a new lower crust produced by underplating within plate. Ultramafic xenoliths had been found only in augite diorites and amphibole diorites. Field investigations show that ultramafic xenoliths in augite diorites had been inherited from amphibole diorites, so ultramafic xenoliths had been only entrained by hydrous dioritic magma. Ultramafic xenoliths are mainly made up of dunite and harzburgite, orthopyroxenite and bistangite are the lessor. Coarse olivines in dunite often show many chromite exsolution lamellae. Opx in orthopyroxenite often show dense chromite exsolution lamellae. The presence of exsolution minerals indicates that ultramafic xenoliths had cooled before entraining. Metasomatism phenomenons are popular in dunite and harzburgite xenoliths, including two kinds of assemblage, cpx+phlogapite and opx+pl. The first metasomatism assemblage indicates an ancient enrichment. Rb-Sr dating of xenoliths shows that the ancient enrichment happened in 223 ± 7Ma. The second metasomatism assemblage indicates a recent, relatively not deep melt-rock interaction, which might be related with the genesis of the high-Mg high-K calcalklic rocks. Mineralogy and geochemistry indicate that these ultramafic xenoliths might sample the crust-mante transition zone (or the base of lower crust, moho). Investigation of high-Mg intrusions and their ultramafic xenoliths in Laiwu indicate that the thinning processes of Sino-Korea Plate can be divided into two stages. The first stage is lithosphere mantle thinning with crust thickening by underplating in lower crust. The second stage is that the thickened lower crust delaminated into the underlying mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyzes landsliding process by nonlinear theories, especially the influence mechanism of external factors (such as rainfall and groundwater) on slope evolution. The author investigates landslide as a consequence of the catastrophic slide of initially stationary or creeping slope triggered by a small perturbation. A fully catastrophe analysis is done for all possible scenarios when a continuous change is imposed to the control parameters. As the slip surface continues and erosion due to rainfall occurs, control parameters of the slip surface may evolve such that a previously stable slope may become unstable (e.g. catastrophe occurs), when a small perturbation is imposed. Thus the present analysis offers a plausible explanation to why slope failure occurs at a particular rainfall, which is not the largest in the history of the slope. It is found, by analysis on the nonlinear dynamical model of the evolution process of slope built, that the relationship between the action of external environment factors and the response of the slope system is complicatedly nonlinear. When the nonlinear action of slope itself is equivalent to the acting ability of external environment, the chaotic phenomenon appears in the evolution process of slope, and its route leading to chaos is realized with bifurcation of period-doublings. On the basis of displacement time series of the slope, a nonlinear dynamic model is set up by improved Backus generalized linear inversion theory in this paper. Due to the equivalence between autonomous gradient system and catastrophe model, a standard cusp catastrophe model can be obtained through variable substitution. The method is applied to displacement data of Huangci landslide and Wolongsi landslide, to show how slopes evolve before landsliding. There is convincing statistical evidence to believe that the nonlinear dynamic model can make satisfied prediction results. Most important of all, we find that there is a sudden fall of D, which indicates the occurrence of catastrophe (when D=0).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facing the problems met in studies on predominant hydrocarbon migration pathways, experiments and numerical simulating were done in this thesis work to discuss the migration mechanisms. The aim is to analyze quantitatively the pathway pattern in basin scale and to estimate the hydrocarbon loss on the pathway that offer useful information for confirming the potential hydrocarbon accumulation. Based on our understandings on hydrocarbon migration and the fluid dynamic theory, a series of migration experiments were designed to observe the phenomena where kerosene is used as draining phase driven only by buoyancy force that expulses pore water. These experiments allow to study the formation of migration pathways, the distribution of non-wetting oil along these pathways, and the re-utilizing of previously existing pathways marked by residual traces etc. The types of pattern for migration pathways may be characterized by a phase diagram using two dimensionless numbers: the capillary number and the Bond number. The NMR technique is used to measure the average saturation of residual oil within the pathways. Based our experiment works and percolation concept, a numerical simulation model were proposed and realized. This model is therefore called as BP (Buoyancy Percolation) simulator, since buoyancy is taken as the main driving force in hydrocarbon migration. To make sure that BP model is applicable to simulate the process of oil secondary migration, the experimental phenomena are compared with those simulated with BP model by fractal method, and the result is positive. After then, we use BP simulator to simulate the process of migration of oil in the porous media saturated with water at different scale. And the results seem similar to those cited in literatures. In addition, our software is applied in Paris basin to predict the pathway of hydrocarbon migration happened in the Middle Jurassic reservoirs. It is found that the results obtained with our BP model are generally agree with Hindle (1997) and Bekeles'(1999), but our simulated migration pathway pattern and migration direction seem more reasonable than theirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modeling of petroleum flow path (petroleum charging) and the detail of corresponding software development are presented in this paper, containing principle of petroleum charging, quantitative method, and practical modeling in two oil fields. The Modeling of Petroleum Flow Path is based on the result of basin modeling, according to the principle of petroleum migrating along the shortest path from the source to trap, Petroleum System Dynamics (Prof. Wu Chonglong, 1998), the concept of Petroleum Migration and Dynamic Accumulation (Zhou Donyan, Li Honhui, 2002), etc. The simulation is done combing with all parameters of basin, and considering the flow potential, non-uniformity of source and porous layer. It's the extending of basin modeling, but not belong to it. It is a powerful simulating tool of petroleum system, and can express quantitatively every kind of geology elements of a petroleum basin, and can recuperate dynamically the geology processes with 3D graphics. At result, we can give a result that the petroleum flow shows itself the phenomena of main path, and without using the special theory such as deflection flow in fractures(Tian Kaiming, 1989, 1994, Zhang Fawang, Hou Xingwei, 1998), and flow potential(England, 1987). The contour map of petroleum flow quantitative show clearly where the coteau - dividing slot is, and which convergence region are the main flow path of petroleum, and where is the favorable play of petroleum. The farsighted trap can be determined if there are enough information about structural diagram and can be evaluated, such as the entrapment extent, spill point, area, oil column thickness, etc. Making full use of the result of basin modeling with this new tool, the critical moment and scheme of the petroleum generation and expulsion can be showed clearly. It's powerful analysis tool for geologist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fanshan complex consists of layered potassic ultramafic-syenite intrusions. The Fanshan apatite (-magnetite) deposit occurs in the Fanshan complex, and is an important style of phosphorus deposit in China. The Fanshan complex consists of three (First- to Third-) Phases of intrusion, and then the dikes. The First-Phase Intrusive contains ten typical layered rocks: clinopyroxenite, biotite clinopyroxenite, coarse-grained biotite clinopyroxenite, pegmatitic orthoclase-biotite clinopyroxenite, variegated orthoclase clinopyroxenite, interstitial orthoclase clinopyroxenite, biotite rock, biotite-apatite rock, biotite rock and magnetite-apatite rock. This layered intrusive consists of nine rhythmic units. Each rhythmic unit essentially comprises a pair of layers: clinopyroxenite at the bottom and biotite clinopyroxenite at the top. The apatite (-magnetite) deposit is situated near the top of rhythmic Unit no. 6 of the First-Phase Intrusive. The Second-Phase Intrusive contains three typical rocks: coarse-grained orthoclase clinopyroxenite, . coarse-grained salite syenite and schorlomite-salite syenite. The Third-Phase Intrusive includes pseudo-trachytic salite syenite, porphyritic augite syenite, fine-grained orthoclase clinopyroxenite and fine-grained salite syenite. The origin of the Fanshan complex is always paid attention to it in China. Because most layered igneous intrusion in the world not only have important deposit in it, but also carry many useful information for studying the formation of the intrusion and the evolvement of magma. Two sketch maps were drawn through orebodies along no. 25 cross-cut on 425 mL and no. 1 cross-cut on 491 mL in the Fanshan mine. Through this mapping, a small-scaled rhythmic layering (called sub-rhythmic layering in the present study) was newly found at the top of the rhythmic Unit no. 6. The concept of sub-rhythmic layering is defined in this article. The sub-rhythmic layering is recognized throughout this apatite-rich part, except for magnetite-apatite rock. Presence of the layered magnetite-apatite rock is one of the characteristics of the Fanshan apatite (-magnetite) deposit. Thus, from this layer downwards six units of sub-rhythmic layering are recognized in the present study. Each unit consists of biotite clinopyroxenite (or biotite rock and biotite-apatite rock) layer at the bottom and apatite rock layer at the top. To study this feature in detail is an important work for understanding the origin of the Fanshan complex and apatite (-magnetite) deposit. The origin of the Fanshan complex and the relation of the formation of the apatite(-magnetite)deposit will be interpreted by the study of sub-rhythmic layering on the basis of previous research works. The magma formed the Fanshan complex was rich in K2O, early crystallized pyroxene, and after this phase more biotite crystallized, but no amphibole appeared. This indicated that the activity of H2O in the magma was low. Major element compositions of biotite and clinopyroxene (on thin sections) in the sub-rhythmic layering were analyzed using electron microprobe analyzer. The analytical results indicate Mg/(Mg+Fe*+Mn) atomic ratios (Fe*, total iron) of these two minerals rhythmically changed in sub-rhythmic layering. The trends of Mg/(Mg+Fe*+Mn) atomic ratio (Fe*, total iron) of biotite and clinopyroxene indicate that the magma evolved markedly from relatively magnesian bottom layer to less magnesian top layer in each sub-rhythmic unit. A general trend through the sub-rhythmic layering sequence is both minerals becoming relatively magnesian upwards. The formation temperatures for sub-rhythmic layering yield values between 600 and 800 ℃, were calculated using the ratio of Mg/(Mg+Fe+Mn) in the salite and biotite assemblage. The equilibrium pressures in the rhythmic layers calculated using the contents of Al in the salite were plotted in the section map, shown a concave curve. This indicates that the magma formed the First-Phase Intrusive crystallized by two vis-a-vis ways, from its bottom and top to its centre, and the magnetite-apatite rock was crytallized in the latest stage. The values of equilibrium pressures in the sub-rhythmic layering were 3.6-6.8(xlO8) Pa with calculated using the contents of Al in the salite. The characteristics of geochemistry in various intrusive rocks and the rocks or apatite of sub-rhythmic layers indicated that the Fanshan complex formed by the comagmatic crystallization. The contents of immiscible elements and REEs of apatite rock at the top of one sub-rhythmic unit are more than biotite clinopyroxenite at the bottom. The contents of immiscible elements and REEs of apatite of biotite clinopyroxenite at the bottom of one sub-rhythmic unit are higher than apatite rock at the top. The curves of rocks (or apatite) in the upper sub-rhythmic units are between two curves of the below sub-rhythmic unit in the primitive mantle-normalized trace element abundance spider diagram and the primitive mantle-normalized REE pattern. The trend for the contents of immiscible elements and REEs inclines to the same contents from the bottom to the top in sub-rhythmic layering. These characteristics of geochemistry of rocks or apatites from sub-rhythmic layering indicate that the latter sub-rhythmic unit was produced by the residual magma after crystallization of the previous sub-rhythmic unit. The characteristics of petrology, petrochemistry, geochemistry in the Fanshan complex and sub-rhythmic layers and the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering rejected the hypotheses, such as magma immiscibility, ravitational settling and multiple and pulse supplement of magma. The hypothesis of differentiation by crystallization lacks of evidences of field and excludes by this study. On the base of the trends of formation temperatures and pressures, the characteristics of petrology, petrochemistry, geochemistry for the Fanshan complex and the characteristics of geochemistry for the rocks (or apatites), the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering, and the data of oxygen, hydrogen, strontium and neodymium isotopes, this study suggests that the magma formed the Fanshan complex was formed by low degree partial melting of mantle at a low activity of H2O, and went through the differentiation at the depth of mantle, then multiply intruded and crystallized. The rhythmic layers of the First-Phase Intrusive formed by the magma fractional crystallized in two vis-a-vis ways, from the bottom and top to the centre in-situ fractional crystallization. The apatite (-magnetite) deposit of the Fanshan complex occurs in sub-rhythmic layering sequence. The the origin of the sub-rhythmic layering is substantially the origin of the Fanshan apatite (-magnetite) deposit. The magma formed the rhythmic layers of First-Phase Intrusive was rich in H2O, F and P at the later stage of its in-situ fractional crystallization. The Fanshan apatite (-magnetite) deposit was formed by this residual magma in-situ fractional crystallization. The magnetite-apatite rock was crystallized by two vis-a-vis ways at the latest stage in-situ fractional crystallization in the rhythmic layers. The result was light apatite layer below heavy the magnetite-apatite layer, formed an "inversion" phenomenon.