204 resultados para Aluminum oxides
Resumo:
Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of sample having the stoichiometry La4BaCu5-xMnxO12 (x = 0 similar to 5) were prepared, characterized by XRD, IR and H-2 - TPR and used as catalyst for NO + CO reaction. It was found that they have 5 - layered ABO(3) - type structure. The results of H-2 - TPR showed that the Cu ion was more easily reduced while a part of them was replaced by Mn ions. Their catalytic behavior to NO + CO reaction was investigate, La4BaCu2Mn3O12 showed the highest catalyst activity for the reaction than the others. The reaction mechanism is discussed:the activity of the catalysts could be attributed to the Cu ions, but it was improved when Mn ions took the place of some Cu ions.
Resumo:
The mixed oxides, including LaBa2Cu3O7, LaBaCu2O5, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, H-2-TPR. It was found that their structures were layered ABO(3) perovskite structure and they were the active catalysts for the NO reduction by CO. The existence of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
Two groups of mixed oxides La2-xThxCuO4+/-lambda (0.0 less than or equal to x less than or equal to 0.4) and La2-xSrxCuO4+/-lambda (0.0 less than or equal to x less than or equal to 1.0) were prepared. Their crystal structures were studied with XRD and IR spectra, etc. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) was measured through chemical analyses. Catalysis of the abovementioned mixed oxides was investigated in phenol hydroxylation, good results were obtained for some mixed oxides, and found that the catalysis of these mixed oxides have close relation with their defect structure and composition. A radical substitution mechanism was also proposed for this catalytic reaction.
Resumo:
Ethylene polymerization by zirconocene-B(C6F5)(3) catalysts with various aluminum compounds has been investigated. It is found that the catalytic activity depended on zirconocenes used, and especially on the type of aluminum compounds. For Et(H(4)Ind)(2)ZrCl2 (H(4)Ind : tetrahydroindenyl), the activity decreases in the following order: Me3Al > i-Bu3Al > Et3Al much greater than Et2AlCl. While for Cp2ZrCl2(Cp : cyclopentadienyl), it varies as follows: i-Bu3Al > Me3Al much greater than Et3Al. Furthermore, the activity is significantly affected by the addition mode of the catalytic components, which may imply that the formation of active centers is associated with an existing concentration of catalytic components. Results of thermal behavior of polyethylene (PE) studied by differential scanning calorimetry(DSC) show that crystallinity of the polymer prepared with Et3Al is higher than that with Me3Al or i-Bu3Al. It is also found that the number-average molecular weight ((M) over bar) of the polymers prepared with Me3Al or i-Bu3Al is much higher than that with Et3Al. H-1-NMR studies substantiate that i-Bu3Al is a more efficient alkylation agent of Cp2ZrCl2 in comparison with Me3Al. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Mixed oxides Ln(2)CuO(4+/-lambda)(Ln = La, Pr, Nd, Sm, Gd) with K2NiF4 structure were prepared. Their crystal structures were studied with XRD and IR spectra. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) were determined through chemical analyses. Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated. Results show that the catalysis of these mixed oxides has close relation with their structures and composition. Substitution of A site atom in Ln(2)CuO(4+/-lambda) has a great influence on their catalysis in the phenol hydroxylation.
Resumo:
A series of Sr2+ doped perovskite like oxides La2-xSrxCuO4-lambda (x = 0 similar to 1) were prepared, the structure, lattice parameters, content of Cu3+, oxygen vacancies created by Sr2+ substitution and composition of these complex oxides were studied by XRD and iodic titration method. The redox ability,active oxygen species and surface image were evaluated and analyzed with TPD, TG, XPS and SEM measurements. The catalytic activity for ammonia oxidation over these oxides was tested, and the relationship among the catalytic properties, structure, nonstoichiometric oxygen,redox ability and surface behavior were correlated and some information on the mechanism of ammonia oxidation was obtained.
Resumo:
Active carbon supported copper oxides were used in NO reduction. The conversions of NO reduction depends strongly on surface oxygen-containing groups on the active carbons, among them the carboxyls and lactones favored remarkably the NO reduction. However, hydrochloric acid treatment led to the decomposition of the carboxyls and lactones on C2 and C3, decreasing their reactivities for NO reduction. Concentrated HNO3 treatment of active carbon produced higher conversions of NO reduction at relatively low temperatures due to the marked increase in the amounts of the carboxyls and lactones.
Resumo:
Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.
Resumo:
A compact non-stoichiometric molybdenum (VI, V) oxide of blue film was grown on carbon fiber (CF) microelectrode surface be cycling the potential between + 0.2V and - 0.70V in a freshly prepared Na2MoO4 solution containing 5 x 10(-3) mol/L H2SO4. The quantity-of the oxide is controlled by the charge passing the electrode. The electrochemical pretreatment of CF microelectrode not only mises the deposition velocity of molybdenum oxide on CF surface, but also improves greatly the cyclic voltammetric behavior of the molybdenum oxide film prior to the electrodeposition. The cathodic processes are believed to yield the hydrogen molybdenum oxide bronzes HxMoO3(0 < x < 2), or substoichiometric lower molybdenum oxides with the formula MoO3-y(0 < y < 1). The anodic response results from the reversible oxidation of molybdenum bronze/Mo(V) centers [or perhaps Mo(IV) in more reduced coatings], to Mo(VI). Further information was gained about the chemical composition and valent state of Mo from XPS and SEM.
Resumo:
Superconductor mixed oxides are often used as catalysts at high temperature in gas-solid phase oxidations and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of La2-xSrxCuO4+/-lambda (x = 0, 0.1, 0.7, 1) mixed oxides in phenol hydroxylation at lower temperatures are studied, and we find that the value of x has a significant effect on catalytic activity: the lower its value, the higher the catalytic activity; a mechanism is proposed to explain the experimental phenomena.
Resumo:
The effect of a fine powder of Y2O3, Nd2O3, and Ho2O3 on the crystal structure of isotactic polypropylene (iPP) was studied with WAXD and DSC techniques. The results showed that the addition of the three rare earth oxides (REOs) can increase the crystallite size of the alpha-form crystal and the degree of crystallinity of iPP at an annealing temperature of 120 degrees C and that both Y2O3 and Nd2O3 are the beta-nucleator of iPP. REOs enhance the overall growth rate of the spherulites of iPP. All the iPP samples filled with REOs which were crystallized isothermally at 132 degrees C from the melt exhibited their melting peaks of the beta-form on the DSC heating traces, indicating that the REOs are the nucleating agents for both the alpha- and beta-forms of iPP under isothermal conditions. (C) 1996 John Wiley & Sons, Inc.
Resumo:
A series of samples having the composition of La2-xSrxNiO4(0 less than or equal to x less than or equal to 1) were prepared and used as catalysts for NH3 oxidation. It was found that the La and oxygen vacancies exist in the La2-xSrxNiO4-lambda(0 less than or equal to x less than or equal to 1). The unit cell volume decreases with the increase of x. For bath c and a parameters there appeared a turning point at x = 0.5. Doping with a lower valence cation Sr2+ in the case of La2NiO4 resulted in an increase of Ni3+, consequently the formation of oxygen vacancies, the increase of reducing ability and the increase of catalytic activity. In the oxygen TPD of La2-xSrxNiO4(0 less than or equal to x less than or equal to 1) appeared three peaks, the alpha' peak at about 400K was attributed to the surplus oxygen desorption, the a peak at 700K which approaches to a maxium at x = 0.6 was attributed to the oxygen adsorbed at oxygen vacancies. The beta peak at about 1000K which depends closely on the x and favors the catalytic activity was attributed to the reduction of Ni3+. The catalytic activity of La-2-x SrxNiO4 mixed oxides in the NH3 oxidation in general could be attributed to the extent of the redox reaction: 2Ni(2+) + O-2 + V-0(..) reversible arrow 2Ni(3+) + 20(-) where V-0(..) representes the oxygen vacancies and O- the oxygen species adsorbed at the vacancies.
Resumo:
Superconductor Y-Ba-Cu-O mixed oxides were synthesized and their catalysis in phenol hydroxylation was studied too. Results show that, Y2BaCuO5 has better activity than that of YBa2Cu3O7-x, With the catalysis study of another mixed oxide La2CuO4 a conclusion that AO structure unit is the key for mixed oxides to have high activity in phyenol hydroxylation was drawn. Meanwhile, the effects of reaction temperature, medium and medium (water) pH on phenol hydroxylation catalyzed by Y2BaCuO5 and the stability of the mixed oxides were also studied.