65 resultados para yard drying
Resumo:
We study the macroscopic drying patterns of aqueous suspensions of colloidal silica spheres. It was found that convection strength can influence pattern formation. Uniformed films are obtained at weaker convection strength. In addition, we make clear that it is not reasonable to discuss individually the effect of temperature and humidity on the colloid self-assembly. The physical mechanism is that these factors have relationship with the evaporation rate, which can affect the convection strength.
Resumo:
Controlled vertical drying deposition method was used to make high-quality single crystal close-packed colloidal films formed of different radii polystyrene latex spheres on glass substrates coming from a low concentration water suspension (0.1% volume fraction). Regardless of the spheres radii the film thickness was about 6.3 microns. However, cracks destroyed the crystalline film structure during the colloidal film growth. The effect of particle radius (85-215 nm range) on film cracking was systematically studied using in situ optical fracture monitoring. Primary parallel cracks run along the vertical growth direction, later followed by secondary branched cracks in-between the primary cracks due to residual water evaporation. Quantitative theoretical relationship between the cracks spacing and particles radius was derived and shows good agreement with experimental observations. Normalized cracks spacing is related to a reciprocal ratio of the dimensionless particle radius.
Resumo:
IEECAS SKLLQG
Resumo:
Conventional oven drying (COD) and supercritical drying (SCD) methods were applied to the preparation of Mn-substituted hexaaluminate (BaMnA(11)O(19-alpha)) catalysts. The effect of drying methods on phase composition, specific surface area, pore structure and combustion activity of the samples was investigated. The samples obtained by SCD have higher surface area, narrower pore size distribution, and higher combustion activity than those obtained by COD.
Resumo:
Using a dry/wet spinning process, asymmetric cellulose hollow fiber membranes (CHFM) were prepared from a dope composed of cellulose/N-methylmorpholine-N-oxide/water. The formation mechanism for the finger-like macrovoids at the inner portion of as-spun fibers was explained. Naturally drying and three solvent exchange drying methods were tried to investigate their influence on morphology and properties of CHFM. It was found that the ethanol-hexane exchange drying was an appropriate method to minimize morphology change of the as-spun CHFM, whereas the naturally drying caused the greatest shrinkage of the fibers that made the porous membrane become dense. The result, CHFM from ethanol-hexane exchange drying performed the highest gas permeation rate but gas permeation of the naturally dried membrane could not be detectable. The resultant CHFM from the ethanol-hexane exchange drying also showed acceptable, mechanical properties, thus it was proposed to be an appropriate method for gas separation purpose. The experimental results supported the proposed drying mechanism of CHFM. The free water would evaporate or be replaced by a solvent that subsequently would evaporate but the bonded water would remain in the membrane. What dominated the changes of membrane morphology during drying should be. the molecular affinities of cellulose-water, water-solvent and solvent-solvent. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
LaMnxAl12-xO19 catalysts were prepared from NH4OH and metal nitrates solutions. Supercritical drying (SCD) and conventional oven drying (CD) methods were used to extract the water in the hydrogel. The effects of drying methods on properties of the catalysts were investigated by means of TEM, N-2-adsorption, thermogravimetry (TG)-differential thermal analysis (DTA) and X-ray diffraction. SCD method is beneficial to maintain high surface area and improving catalytic activity for methane combustion of the catalyst. The specific surface area and pore volume of LaMn1Al11O19 catalyst prepared by SCD method are 28 m(2)/g and 0.23 cm(3)/g, respectively, and the ignition of methane could be carried out at 450degreesC. However, those of the CD catalyst prepared from the same precursor are 15 m(2)/g, 0.11 cm(3)/g and 530 degreesC, respectively. Suitable Mn content (0 less than or equal to x less than or equal to 2) could promote the formation of LaMnAl11O19 hexaaluminate, while further addition of Mn (2 less than or equal to x less than or equal to 6) cause the formation of LaMnO3. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.