44 resultados para tissue and cell culture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

从七叶树(Aesculus Chinensis Bunge)的未成熟的果实的子叶中诱导出愈伤组织;愈伤组织在pH5.8,温度26 ± 1 ℃,加有NAA,TBA,K,CA的MS培养基上生长良好。光对愈伤组织的生长有促进作用,植醇对生长有抑制作用;进行了发酵罐培养。 利用TLC、质谱分离鉴定了γ-生育酚的存在,并利用HPLC、荧光法测定了生育酚的含量。结果表明,愈伤组织中生育酚的含量在3.2~6.6mg/100g干重;光对生育酚的合成有促进作用;植醇是生育酚合成的可能前体;悬浮培养不利于生育酚的合成,培养液中没有发现生育酚的存在。生育酚的合成与组织的生长速率成正相关。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

绞股蓝(Gynostemma pentaphyllum)系葫芦科绞股蓝属植物,药用价值广泛,但其野生资源日趋减少,绞股蓝主要药效成分为绞股 蓝皂甙。利用组织和细胞培养生产绞股蓝皂甙是合理开发利用和保护绞股蓝资源的可能途径之一。本文对绞股蓝组织培养中培养基 的蔗糖和激素的组成以及各种胁迫条件:渗透压、重金属离子、真菌诱导物等对皂苷产量的影响进行了初步研究。其中,渗透压、 重金属离子、真菌诱导物对绞股蓝愈伤组织皂甙产量的影响尚未见报道。1. 蔗糖对绞股蓝愈伤组织之生长影响显著,2,4-D对绞股 蓝愈伤组织皂甙含量、产量影响显著。增加蔗糖用量,减少2,4-D的用量可提高皂甙产量。2. Mn++ 用量的提高抑制绞股蓝愈伤组 织的生长,但可促进皂甙含量、产量的提高。Mn++用量提高至MS培养基的20-30倍时可使皂甙产量增加近一倍,而提高Cu++浓度的 作用不明显。3. 甘露醇用量增加抑制绞股蓝愈伤组织的生长,但可使皂甙含量、产量提高。0.680mol·l-1甘露醇可使皂甙产量提 高83%,而Nacl较大抑制愈伤组织的生长并使皂甙产量降低。4. 米曲霉粗提物对绞股蓝愈伤组织生长先略微促进,然后抑制,而根 霉粗提物则使愈伤组织生长受抑制;两者对皂甙含量、产量的作用相似:在较低浓度范围内升高,然后下降。米曲霉粗提物可提高 产量一倍,根霉粗提物可提高42%。这些结果为高产细胞系的筛选和生长、生产培养条件的优化积累了资料。在综述部分,对植物 细胞培养中组织和器官分化、细胞结构变化、生化水平的变化与次生物合成和积累的关系作了讨论。Gynostemma pentaphyllum blongs to Gynostemma, Cucurbitaccae. It has a wide medical use, but its wild resource is threatened by people's excessive use. Its effective medical components are gypenosides. For reasonable use and protect its resource, it is a possible way to product gypenosides by plant tissue and cell culture. This paper has a primary study on the components of sucrose and hormones and a variety of stress conditions: osmostic pressure, heavy metal ion, fungal elicitors in the medium for the calli culture. The effects of osmostic pressure, heavy metal ion and fungal elicitors on the calli of Gynostemma pentaphyllum have not been reported. 1. Sucrose had a significant effect on the growth of the calli, 2,4 D had notable effects on the gypenosides content and production of the calli. Increased the concentration of sucrose and decreased the concentration of 2,4 D improved the production of gypenosides. 2. Increased the concentration of Mn++ inhibited the growth of the calli, but improved the content and production of gypenosides. The optimum concentration was 20-30 times as MS medium which improved the production 100%. Increased the concentration of Cu++ had not a notable effect. 3. Increased the concentration of mannitol inhibited the growth of the calli, but improved the content and production of gypenosides. The optimum concentration was 0.680mol·l-1 which improved the production 83%. Nacl apparently inhibited the growth of the calli and decreased the production of gypenosides. 4. The crude preparation of Aspergillus oryzae inhibited the growth of the calli that in low concentration. The crude praparation of Rhizopus formosensis inhibited the growth of the calli throughout. Their effects on the content and production of gypenosides are alike, but the former is higher than the latter. On the optimum concentration, each crude preparation improved the production 100% (Aspergillus oryzae), 42%(Rhizopus formosensis). These results has accumulated some informantion on the select of high yield cell strains and choose the best culture conditons for the growth and gypenosides product of the calli. In the review, it is discussed that the differentiation on tissue-organal, cellular and biochemical levels related to the synthesis and accumulation of secondary metabolites in plant culuture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate whether aberrant hypermethylation in plasma DNA could be used as diagnosis makers for hepatocellular carcinoma (HCC), we performed methylation-specific PCR (MSP) to check the methylation status of five tumor associated genes in 36 cases of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of potassium dichromate in concentrations of 0.5 to 10 mg/l on a laboratory culture of Sc. quadricauda algae was studied in standard conditions. The total cell numbers decreased at potassium dichromate concentrations over 1 mg/l, and the proportion of living cells decreased at all studied concentrations. A positive correlation was found between changes in cell size and their numbers at toxin concentrations of 1 and 3 mg/l, and a negative correlation was found between the relative size and the cell numbers at 3 and 10 mg/l. This may be due to different intensity of growth inhibition and cell division under the influence of the toxin. The culture sensitivity to the toxin increased in autumn and decreased in the spring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aryl hydrocarbon (Ah) receptor (Ah-agonist) effects of environmental samples containing polychlorinated aromatic hydrocarbons were evaluated using a 7-ethoxyresorufin-O-deethylase (FROD) assay of a primary hepatocyte culture from grass carp (Ctenopharyngodon idellus). The results were compared with those obtained from the assay using the rat hepatoma cell line H4IIE and chemical analysis using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). A dose-response relationship was observed between the EROD activities, either from primary hepatocyte culture assay or from H4IIE assay, and concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that the assay based on the H4IIE cell line (EC50 = 0.83 mug/mL) is more sensitive to TCDD than the assay based on primary hepatocyte Culture (EC50 = 9.7 pg/mL). In tests of environmental samples, the results from the assay using primary hepatocyte culture were comparable to those from the assay using the H4IIE cell line and chemical analysis of concentrations of mixtures of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). The lack of a change in the activities of glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) in cell culture upon exposure to TCDD indirectly indicates that the compound is persistent to biodegradation in the cell culture system. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human acidic fibroblast growth factor gene, hafgf, was successfully transferred into Laminaria japonica (kelp) gametophytes via microprojectile bombardment using the biolistic PDS-1000/He gene gun. Following phosphinothricin screening, PCR detection and Southern blot analysis, transgenic L. japonica gametophytes were cultivated in an illuminated bubble-column bioreactor to optimize growth conditions. A maximal final dry cell density of 1,695 mg l(-1) was obtained in a batch culture having an initial dry cell density of 129.75 mg l(-1). This was achieved using an aeration rate of 1.08 l air min(-1) l(-1) culture in a medium containing 1.5 mM inorganic nitrate and 0.15 mM phosphate. In addition, the relationship between different nitrogen sources and growth of transgenic gametophytes indicated that both urea and sodium nitrate were effective nitrogen sources for cell growth, while ammonium ions inhibited growth of these gametophytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.