348 resultados para thiosulfate oxidation
Resumo:
Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolfic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and shred ceramic particles corresponds to a I-Vproperty with two critical voltages. The growth regularity of PEO cermet coatings was also studied.
Resumo:
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.
Resumo:
The effect of diffuse treatment on coating microstructure and oxidation resistance at high-temperature of hot-dip aluminum were studied by means of TEM, SEM and XRD. The results show that, the diffusion temperature has significant effect on structure of coatings and its oxidation resistance. After diffusion at 750 degreesC, the coating consists of thick outer surface layer (Fe2Al5+ FeAl2), thin internal layer (FeAl + stripe FeAl2), and its oxidation resistance is poor. After diffusion at 950 degreesC, the outer surface layer is composed of single FeAl2 phase, the internal layer is composed of FeAl phase, and its oxidation resistance declines due to the occurrence of early stage internal oxidation cracks in the coating. After diffusion at 850 degreesC, the outer surface layer becomes thinner and consists of FeAl2 Fe2Al5(small amount), the internal layer becomes thicker and consists of FeAl+spherical FeAl2, and the spheroidized FeAl2 phase in the internal layer and its existing in FeAl phase steadily improve the oxidation resistance of the coating.
Resumo:
Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of gamma-Al2O3, mullite, and alpha-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
ZnO films prepared by the thermal oxidation of the ZnS films through thermal evaporation are reported. The as-deposited ZnS films have transformed to ZnO films completely at 400 degrees C. The 400-700 degrees C annealed films with a preferential c-axis (002) orientation have a hexagonal wurtzite structure. The band gap of ZnO films shifts towards longer wavelength with the increase of the annealing temperature. The relationship between the band gap energy of ZnO films and the grain size is discussed. The shift of the band gap energy can be ascribed to the quantum confinement effect in nanocrystal ZnO films. The photoluminescence spectra of ZnO films show a dominant ultraviolet emission and no deep level or trap state defect emission in the green region. It confirms the absence of interstitial zinc or oxygen vacancies in ZnO films. These results indicate that ZnO film prepared by this simple thermal oxidation method is a promising candidate for optoelectronic devices and UV laser. (c) 2005 Elsevier BN. All rights reserved.
Resumo:
Microcystins (MCs) comprise a family of more than 80 related cyclic hepatotoxic heptapeptides. Oxidation of MCs causes cleavage of the chemically unique C-20 beta-amino acid (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda) amino to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB), which has been exploited to enable analysis of the entire family. In the present study, the reaction conditions (e.g. concentration of the reactants. temperature and pH) used in the production of MMPB by oxidation of cyanobacterial samples with permanganate-periodate were optimized through a series of well-controlled batch experiments. The oxidation product (MMPB) was then directly analyzed by high-performance liquid chromatography with diode array detection. The results of this study provided insight into the influence of reaction conditions on the yield of MMPB. Specifically, the optimal conditions, including a high dose of permanganate (>= 50 mM) in saturated periodate solution at ambient temperature under alkaline conditions (pH similar to 9) over 1-4 h were proposed, as indicated by a MMPB yield of greater than 85%. The technique developed here was applied to determine the total concentration of MCs in cyanobacterial bloom samples, and indicated that the MMPB technique was a highly sensitive and accurate method of quantifying total MCs. Additionally, these results will aid in development of a highly effective analytical method for detection of MMPB as an oxidation product for evaluation of total MCs in a wide range of environmental sample matrices, including natural waters, soils (sediments) and animal tissues. (C) 2009 Elsevier B.V. All rights reserved.