212 resultados para native copper
Resumo:
This paper studies the electronic structure and native defects intransparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2 (M = Sc, Y) is impossible to shown-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.
Resumo:
麻阳铜矿有着悠久的开采历史,被誉为“江南第一古矿”,该矿不仅为古人提供了大量的铜资源,也是现今湖南省最大的铜矿。麻阳铜矿床位于麻阳县与辰溪县交界处,地处沅麻盆地中段,南部接近雪峰山,矿体赋存于白垩系红层砂岩中,严格受地层控制。 长期以来,雪峰山地区一直是地学界研究华南构造格局的重点地区,但沅麻盆地作为雪峰山构造带的次级构造单元受关注程度相对较低。20世纪60年代,多家单位在沅麻盆地开展铜、石油、煤、石膏普查和区域地质测量工作,先后在发现了麻阳(九曲湾)、黄双、杉木溪等12处自然铜/辉铜矿矿床(矿化点)。麻阳铜矿正式投产后,对铜矿床乃至沅麻盆地地质研究工作几乎处于停滞状态。20世纪90年代,开展的区域基础地质填图和麻阳铜矿床储量扩大的相关研究,对矿床地质描述、沉积相分析等做了进一步的工作,但对矿床地球化学所做工作甚少,对麻阳铜矿中自然铜矿化形成机理的认识还存在较大的分歧。本文在深入的野外地质工作基础上,对矿区及雪峰山地区岩石、矿石进行了细致的显微鉴定,并对矿石中各类矿物进行了详细的电子探针分析;系统分析了矿区及雪峰山地区各地质单元(地质体)的主量元素、微量元素、稀土元素、同位素等地球化学特征,结合前人研究主要取得如下结论性成果: (1) 通过主、微量元素地球化学分析,确定区域上沅麻盆地及其源区沉积岩、岩浆岩都具有壳源特征,碎屑物源为活动大陆边缘及岛弧区;矿区碎屑物源区主要经历基性斜长石风化阶段,风化程度不高。 (2) 麻阳铜矿床以及盆地内其他自然铜/辉铜矿矿化点大体都产在盆地靠近雪峰山一侧,赋矿地层为晚白垩系红层,矿体具有多层性的,但严格受透水性较好的灰白色-灰绿色砂岩控制,产状与砂岩乃至红色围岩产状完全一致,无穿插现象。横向上变化沿走向发育短,倾向长且可呈树枝(鸟足)状,但矿体消失部位多为河道相砂岩相变带。矿区发育褶皱构造和同沉积以及后期与褶皱有关的多组断裂,对矿体有破坏和再富集双重作用,但地层对矿化制约更明显。 (3) 麻阳铜矿床矿区碎屑物质来源于雪峰山地区,在矿石中发现的大量原生含自然铜矿化硅质碎屑是铜的最终来源。从碎屑结构上看,这种含铜碎屑与沉积硅质岩相似,但自然铜的铅同位素组成暗示铜的来源与白马山岩体印支期花岗岩、花岗闪长岩关系密切,而明显不同于雪峰山地区出露的前寒武系变质岩以及寒武系黑色页岩(二者都含有硅质岩夹层),因此推断,含铜碎屑可能是与白马山岩体印支期花岗岩、花岗闪长岩活动有关的热水或热液产物。盆地成矿的铜,少部分由机械搬运以碎屑形式搬运至沉积区,并受原地淋滤;绝大部分可能是在风化区溶解由流水(地表水或地下水)带入沉积盆地。 (4) 外来的铜在生物硫富集的层位,与硫结合形成辉铜矿矿化。绝大部分铜在缺硫环境下,因成矿流体物化条件的变化快速沉积形成自然铜矿化。主矿化期发生在沉积期,成矿环境为低温、弱还原条件,流体为含硫酸根、氯离子的高盐度流体,有机质在成矿过程中可能起到一定的作用。 (5) 麻阳铜矿床主成矿期矿化形成后,矿体受同沉积及后期断裂的改造,在断裂附近形成矿化再富集,同沉积及后期断裂中都发现热液特征的石膏、自然铜脉,说明断裂活动时的热液作用对矿床有改造作用。 (6) 虽然麻阳铜矿床具有矿物组合、矿物产出的特殊性,但其成矿过程可能是特定的物化条件下的简单模式:风化-搬运-沉淀-改造。
Resumo:
Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries provide sequential twining mechanism, which results in fivefold deformation twins. (c) 2006 American Institute of Physics.
Resumo:
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.
Resumo:
纳米材料是由尺度在1~100 nm的微小颗粒组成的体系,由于它具有独特的性能而备受关注.本文简要地回顾了分子动力学在纳米材料研究中的应用,并运用它模拟了平均晶粒尺寸从1.79~5.38nm的纳米晶体的力学性质.模拟结果显示:随着晶粒尺寸的减小,系统与晶粒内部的原子平均能量升高,而晶界上则有所下降;纳米晶体的弹性模量要小于普通多晶体,并随着晶粒尺寸的减小而减小;纳米晶铜的强度随着晶粒的减小而减小,显示了反常的Hall-Petch效应;纳米晶体的塑性变形主要是通过晶界滑移与运动,以及晶粒的转动来实现的;位错运动起着次要的、有限的作用;在较大的应变下(约大于5%),位错运动开始起作用;这种作用随着晶粒尺寸的增加而愈加明显.
Resumo:
The microstructure of computer generated nanocrystalline coppers is simulated by using molecular dynamics with the Finnis-Sinclair potential, analysed by means of radial distribution functions, coordination number, atomic energy and local crystalline order. The influence of the grain size on the nanocrystalline structure is studied. The results reveal that as the grain size is reduced, the grain boundary shows no significant structural difference, but the grain interior becomes more disordered, and their structural difference diminishes gradually; however, the density and the atomic average energy of the grain boundary present different tendencies from those of the grain interior.
Resumo:
Mechanical behavior and microstructure evolution of polycrystalline copper with nano-twins were investigated in the present work by finite element simulations. The fracture of grain boundaries are described by a cohesive interface constitutive model based on the strain gradient plasticity theory. A systematic study of the strength and ductility for different grain sizes and twin lamellae distributions is performed. The results show that the material strength and ductility strongly depend on the grain size and the distribution of twin lamellae microstructures in the polycrystalline copper.
Resumo:
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modi. cation process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
We present a model in this paper for predicting the inverse Hall-Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro-Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress-strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.
Resumo:
The formation and mechanical properties of amorphous copper are studied using molecular dynamics simulation. The simulations of tension and shearing show that more pronounced plasticity is found under shearing, compared to tension. Apparent strain hardening and strain rate effect are observed. Interestingly, the variations of number density of atoms during deformation indicate free volume creation, especially under higher strain rate. In particular, it is found that shear induced dilatation does appear in the amorphous metal.
Resumo:
Predictions based on an anisotropic elastic-plastic constitutive model proposed in the first part of this paper are compared with the experimental stress and strain data on OHFC copper under first torsion to about 13% and partial unloading, and then tension-torsion to about 10% along eight different loading paths. This paper also describes the deformation and stress of the thin-walled tubular specimen under finite deformation, the numerical implementation of the model, and the detailed procedure for determining the material parameters in the model. Finally, the model is extended to a general representation of the multiple directors, and the elastic-viscoplastic extension of the constitutive model is considered.
Resumo:
The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.
Resumo:
The plastic deformation of polycrystalline Cu with ultrathin lamella twins has been studied using molecular dynamics simulations. The results of uniaxial tensile deformation simulation show that the abundance of twin boundaries provides obstacles to dislocation motion, which in consequence leads to a high strain hardening rate in the nanotwinned Cu. We also show that the twin lamellar spacing plays a vital role in controlling the strengthening effects, i.e., the thinner the thickness of the twin lamella, the harder the material. Additionally, twin boundaries can act as dislocation nucleation sites as they gradually lose coherency at large strain. These results indicate that controlled introduction of nanosized twins into metals can be an effective way of improving strength without suppression tensile ductility. (C) 2007 American Institute of Physics.
Resumo:
Experimental stress-strain data of OFHC copper first under torsion to 13% and then under torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises-type yield surface used in the three models brings about significant departure of the predictions from the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's models produce almost the same prediction to the data, while Dafalias' model cannot accurately predict the plastic deformations when a loading path changes in its direction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The unstable stacking criteria for an ideal copper crystal under homogeneous shearing and for a cracked copper crystal under pure mode II loading are analysed. For the ideal crystal under homogeneous shearing, the unstable stacking energy gamma(us) defined by Rice in 1992 results from shear with no relaxation in the direction normal to the slip plane. For the relaxed shear configuration, the critical condition for unstable stacking does not correspond to the relative displacement Delta = b(p)/2, where b(p) is the Burgers vector magnitude of the Shockley partial dislocation, but to the maximum shear stress. Based on this result, the unstable stacking energy Gamma(us) is defined for the relaxed lattice. For the cracked crystal under pure mode II loading, the dislocation configuration corresponding to Delta = b(p)/2 is a stable state and no instability occurs during the process of dislocation nucleation. The instability takes place at approximately Delta = 3b(p)/4. An unstable stacking energy Pi(us) is defined which corresponds to the unstable stacking state at which the dislocation emission takes place. A molecular dynamics method is applied to study this in an atomistic model and the results verify the analysis above.