38 resultados para micro-mesh gaseous structure
Resumo:
In present paper, a new Micromegas detector is developed, and its time and energy signals are obtained in the figure form. The rising time of fast time signal is less than 2 ns due to the very fast collection of avalanche electrons, and the rising time of the energy pulse is about 100 ns, which is corresponding to the total collecting time of the electrons and ions in the avalanche process. The counter plateau, energy resolution and the gas gains of the detector have been compared with other groups' experimental results and the Garfield simulation result.
Resumo:
In this paper, a batch file which describes the detailed structure and the corresponding physical process of Micro-Mesh Gaseous Structure (Micromegas) detector, the macro commands and the control structures based on the Garfield program has been developed. And using the Garfield program controlled by this batch file, the detector's gain and spatial resolution have been investigated under different conditions. These results obtained by the simulation program not only exhibit the influences of the mesh and drift voltage, the mixture gas proportion, the distance between the mesh cathode and the printed circuit board readout anode, and the Lines Per Inch of the mesh cathode on the gain and spatial resolution of the detector, but also are very important to optimize the design, shorten the experimental period, and save cost during the detector development. Additionally, they also indicate that the Garfield program is a powerful tool for the Micromegas detector design and optimization.
Resumo:
To study working mechanism of super-resolution near-field structure (super-RENS) optical disk from a far-field optics view is very necessary because of the actual far-field writing/readout process in the optical disk system. A Gaussian diffraction model based on Fresnel-Kirchhoff diffraction theory of PtOx-type super-RENS has been set up in this Letter. The relationship between micro-structural deformation (change of bubble structure and refractive index profile) with far-field optical response of PtOx thin film has been studied with it in detail. The simulation results are in good agreement with the experimental results reported in literatures with a designed configuration. These results may provide more quantitative information for better understanding of the working mechanism of metal-oxide-type super-RENS. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A novel Micro-pattern gaseous detector (MPGD), thick GEM with electrodes made of a resistive material (RETGEM) is presented. In this paper we mainly investigate the energy resolution of a RETGEM in Ar+CO2 with different gas mixtures. The results indicate that an energy resolution 30% in single and double mode can be obtained. The existence of an optimum energy resolution is discussed.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
The one-mode analysis method on the pull-in instability of micro-structure under electrostatic loading is presented. Taylor series are used to expand the electrostatic loading term in the one-mode analysis method, which makes analytical solution available. The one-mode analysis is the combination of Galerkin method and Cardan solution of cubic equation. The one-mode analysis offers a direct computation method on the pull-in voltage and displacement. In low axial loading range, it shows little difference with the established multi-mode analysis on predicting the pull-in voltages for three different structures (cantilever, clamped-clamped beams and the plate with four edges simply-supported) studied here. For numerical multi-mode analysis, we also show that using the structural symmetry to select the symmetric mode can greatly reduce both the computation effort and the numerical fluctuation.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
Because of the load transfer effect of interface layer, the stress distribution inside the composite structure of film/substrate can be very different from the Timoshenko's model. In this paper, we give the derivation and analysis of such load transfer effect of shear-lag (S-L) model. The micro-structure size (boundary conditions) effect together with interface load transfer effect becomes more and more important as the microstructure size including the three dimensions of thickness, width and length shrinks. The microstructure size is also responsible for the so-called edge-induced stress. The edge effect and difference of S-L model and Timoshenko model are also demonstrated.
Resumo:
A new structure of solution elements and conservation elements based on rectangular mesh was pro- posed and an improved space-time conservation element and solution element (CE/SE) scheme with sec- ond-order accuracy was constructed. Furthermore, the application of improved CE/SE scheme was extended to detonation simulation. Three models were used for chemical reaction in gaseous detonation. And a two-fluid model was used for two-phase (gas–droplet) detonation. Shock reflections were simu- lated by the improved CE/SE scheme and the numerical results were compared with those obtained by other different numerical schemes. Gaseous and gas–droplet planar detonations were simulated and the numerical results were carefully compared with the experimental data and theoretical results based on C–J theory. Mach reflection of a cellular detonation was also simulated, and the numerical cellular pat- terns were compared with experimental ones. Comparisons show that the improved CE/SE scheme is clear in physical concept, easy to be implemented and high accurate for above-mentioned problems.
Resumo:
Novel three-dimensional (3D) flowerlike MnWO4 micro/nanocomposite structure has been successfully synthesized for the first time. The synthesized products were systematically studied by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) and photoluminescence (PL) spectra. It is found that both reaction time and temperature have significant effects on the morphology of the products.
Resumo:
The nanoscale and microscale fibrillar crystals of nylon 10 10 were obtained by atomizing the very dilute formic acid solution. The length-diameter ratio of these fibrillar crystals increases as the concentration of the atomizing solution increases. Electron diffraction (ED) analysis showed that the hydrogen-bonded sheet in these solution-grown fibrillar crystals was imperfect and had a lower order. Both electron diffraction and characteristic morphology show that melt-crystallized fibrillar crystals always possess perfect packing order and stable structure. A rather perfect ED pattern of the triclinic form of nylon 10 10 along the [001] zone was obtained by tilting the specimen 41 degrees along the elongated direction of the crystal. Fibrillar crystals from bulk have a great tendency to aggregate with parallel packing to form crystal clusters, which look like shish kebabs in morphology. Spherulite is observed occasionally in the domains with very rich sample. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
A novel self-assembled dual-layer film as apotential excellent lubricant for micromachines was successfully prepared on single-crystal silicon substrate by chemical adsorption of stearic acid (STA) molecules on self-assembled monolayer of 3-aminopropyltri
Resumo:
The paper presents results front an experimental investigation of the propagation of gaseous detonation waves over tube sections lined with acoustically absorbent materials. The measurements were compared with results from control tests in a smooth wall section. The results show the increasing effectiveness of a perforated steel plate, wire mesh and steel wool in attenuating detonation.