19 resultados para maximum angular velocity
Resumo:
It is demonstrated that the primary instability of the wake of a two-dimensional circular cylinder rotating with constant angular velocity can be qualitatively well described by the Landau equation. The coefficients of the Landau equation are determined by means of numerical simulations for the Navier-Stokes equations. The critical Reynolds numbers, which depend on the angular velocity of the cylinder, are evaluated correctly by linear regression. (C) 2004 American Institute of Physics.
Resumo:
A nonlinear theory of an intermediate pressure discharge column in a magnetic field is presented. Motion of the neutral gas is considered. The continuity and momentum transfer equations for charged particles and neutral particles are solved by numerical methods. The main result obtained is that the rotating velocities of ionic gas and neutral gas are approximately equal. Bohm's criterion and potential inversion in the presence of neutral gas motion are also discussed.
Resumo:
In recent years, stable and long laminarplasma jets have been successfully generated, and thus it is possible to achieve low-noise working surroundings, better process repeatability and controllability, and reduced metal-oxidation degree in plasma materials processing. With such a recent development in thermal plasma science and technology as the main research background, modeling studies are performed concerning the DCarcplasmatorch for generating the long laminar argon plasma jet. Two different two-dimensional modeling approaches are employed to deal with the arc-root attachment at the anode surface. The first approach is based on circumferentially uniform arc-root attachment, while the second uses the so-called fictitious anode method. Modeling results show that the highest temperature and maximum axial-velocity at the plasmatorch exit are ~15000 K and ~1100 m/s, respectively, for the case with arc current of 160 A and argon flow rate of 1.95×10{sup}(-4)kg/s.
Resumo:
The autorotation of two tandem triangular cylinders at different gap distances is investigated by numerical simulations. At the Reynolds number of 200, three distinct regimes are observed with the increase of gap distance: namely, angular oscillation, quasi-periodic autorotation and ‘chaotic’ autorotation. For various gap distances, the characteristic of vortex shedding and vortex interaction are discussed. The phase graphs (angular acceleration vs. angular velocity) and the power spectra of moment are analyzed to characterize the motion of the cylinder. The Lyapunov exponent is also calculated to identify the existence of chaos.
Resumo:
基于能量守恒和三波耦合波方程, 建立了超短脉冲在参变过程中二次谐波产生时的I类和II类相位匹配条件、基波与谐波之间的群速延迟时间、以及群速失配对晶体长度限制的理论基础。以负单轴非线性光学晶体CsLiB6O10为例, 分析和数值计算了超短脉冲宽度为100 fs时, 谐波的群速匹配长度随基波波长变化的规律。研究结果表明在I类相位匹配条件下, 基波波长为642 nm时, 群速延迟最小, 相应的群速匹配晶体长度最长为19.1 mm;在II类相位匹配条件下, 基波波长为767 nm, 群速延迟最小, 群速匹配长度最
Resumo:
Based on the Coulomb friction model, the frictional motion model of workpiece relating to the polishing pad was presented in annular polishing. By the dynamic analysis software, the model was simulated and analysed. The conclusions from the results were that the workpiece did not rotate steadily. When the angular velocity of ring and the direction were the same as that of the polishing pad, the angular velocity of workpiece hoicked at the beginning and at the later stage were the same as that of the polishing pad before contacting with the ring. The angular velocity of workpiece vibrated at the moment of contacting with the ring. After that the angular velocity of workpiece increased gradually and fluctuated at a given value, while the angular velocity of ring decreased gradually and also fluctuated at a given value. Since the contact between the workpiece and the ring was linear, their linear velocities and directions should be the same. But the angular velocity of workpiece was larger than that of the polishing pad on the condition that the radius of the workpiece was less than that of the ring. This did not agree with the pure translation principle and the workpiece surface could not be flat, either. Consequently, it needed to be controlled with the angular velocity of ring and the radii of the ring and the workpiece, besides friction to make the angular velocity of workpiece equal to that of the polishing pad for obtaining fine surface flatness of the workpiece. Copyright © 2007 Inderscience Enterprises Ltd.}
Resumo:
本文基于库仑摩擦模型,模拟了不同形状的工件在环形抛光的运动。从结果可知,(1)如果工作环处于自由转动状态,工件的角速度在环形抛光中比抛光盘的角速度大;(2)可通过控制工作环的角速度使工件和抛光盘的角速度同步。工作环的角速度依赖于工作环和工件的半径、抛光盘-工件和抛光盘-工作环的摩擦系数,以及抛光盘的角速度;(3)有尖角的工件与工作环的接触处于不连续状态,导致二者的接触状态发生变化和工件角速度的波动。
Resumo:
现代制造业对双频激光干涉仪的最大可测量速度提出了越来越高的要求。最大可测量速度是双频激光干涉仪的一项重要指标,它主要受双频激光光源所输出的频差、干涉仪的光学结构以及电子带宽等因素的限制。本文从理论和实验两方面对干涉仪的最大可测量速度进行了研究,搭建了基于自由落体运动的实验装置。实验结果表明,实际最大可测量速度略低于其理论值。另外,文中还分析了上述三种因素对最大可测量速度的影响。实验装置和结果可供工业应用提供参考。
Resumo:
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.
Resumo:
In this work the influence of initial liquid volume on the capillary flow in an interior corner is studied systematically by microgravity experiments using the drop tower, under three different conditions: the Concus-Finn condition is satisfied,close to and dissatisfied. The capillary flow is studied by discussing the movement of tip of the meniscus in the corner. Experimental results show that with the increase of initial liquid volume the tip location increases for a given microgravity time, the achievable maximum tip velocity increases and the flow reaches its maximum tip velocity earlier However, the results for the three different conditions show some difference. (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Excitation functions are measured for different charge products of the F-19+(27) Al reaction in the laboratory energy range 110.25-118.75MeV in steps of 250keV at theta(lab) = 57 degrees, 31 degrees and -29 degrees. The coherence rotation angular velocities of the intermediate dinuclear systems formed in the reaction are extracted from the cross section energy autocorrelation functions. Compared the angular velocity extracted from the experimental data with the ones deduced from the sticking limit, it is indicated that a larger deformation of the intermediate dinuclear system exists.
Resumo:
A unified criterion is developed for initiation of non-cohesive sediment motion and inception of sheet flow under water waves over a horizontal bed of sediment based on presently available experimental data. The unified threshold criterion is of the single form, U-o = 2 pi C[1 + 5(T-R/T)(2)](-1/4), where U-o is the onset velocity of sediment motion or sheet flow, T is wave period, and C and T-R are the coefficients. It is found that for a given sediment, U-o initially increases sharply with wave period, then gradually approaches the maximum onset velocity U-o = 2 pi C and becomes independent of T when T is larger. The unified criterion can also be extended to define sediment initial motion and sheet flow under irregular waves provided the significant wave orbital velocity and period of irregular waves are introduced in this unified criterion.
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.
Resumo:
The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
We theoretically study the influence of Coulomb potential for photoionization of hydrogen atoms in an intense laser field with elliptical polarization. The total ionization rates, photoelectron energy spectra, and photoelectron angular distributions are calculated with the Coulomb-Volkov wave functions in the velocity gauge and compared with those calculated in the length gauge as well as those calculated with the Volkov wave functions. By comparing the results obtained by the Coulomb-Volkov and Volkov wave functions, we find that for linear polarization the influence of Coulomb potential is obvious for low-energy photoelectrons, and as the photoelectron energy and/or the laser intensity increase, its influence becomes smaller. This trend, however, is not so clear for the case of elliptical polarization. We also find that the twofold symmetry in the photoelectron angular distributions for elliptical polarization is caused by the cooperation of Coulomb potential and interference of multiple transition channels. About the gauge issue, we show that the difference in the photoelectron angular distributions obtained by the velocity and length gauges becomes rather obvious for elliptical polarization, while the difference is generally smaller for linear polarization.