18 resultados para indirect fluorescent antibody test
A new fluorescent quantitative PCR-based in vitro neutralization assay for white spot syndrome virus
Resumo:
A fluorescent quantitative PCR (FQ-PCR) assay utilizing SYBR green I dye is described for quantitation of white spot syndrome virus (WSSV) particles isolated from infected crayfish, Cambarus clarkii. For this assay, a primer set was designed which amplifies, with high efficiency and specificity, a 129 bp target sequence within ORF167 of the WSSV genome. Conveniently, WSSV particles can be added into the FQ-PCR assay with a simple and convenient method to release its DNA. To establish the basis for an in vitro neutralization test, primary cultures of shrimp cells were challenged with WSSV that had been incubated with a polyclonal anti-WSSV serum or with control proteins. The number of WSSV particles released from the cells after these treatments were assayed by FQ-PCR. This test may serve as a method to screen monoclonal antibody pools or recombinant antibody pools for neutralizing activity prior to in vivo animal experiments. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
To study the immunologic function of bursin, we analyzed the effects of anti-bursin monoclonal antibody (mAb) on the immunosuppression in ducks (Cherry Valley duck) by injecting various doses of the anti-bursin mAb into 13-d duck embryos. After hatch, cell-mediated immune activity and humoral responses were studied using lymphocyte proliferation test, tube agglutination test, and indirect enzyme-linked immuno-sorbent assay to detect anti-Escherichia coli antibodies and antibodies to Riemerella anatipester, respectively. Simultaneously, relative weights (BW-adjusted) of bursa of Fabricius (BF), spleen, and thymus were determined. Additionally, the morphology of BF, spleen, and thymus was examined at various ages using conventional histology. Follicle morphology of BF was analyzed by image analysis. The results indicated that anti-bursin mAb markedly decreased duck lymphocyte proliferation, the antibody-producing ability to bacteria, as well as the relative BF weight. Moreover, the anti-bursin mAb hindered the development of BF follicles.
Resumo:
Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate. N,N.N-1,N-1-12,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2- aminoethylamino)-ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric quantum methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3 nm in diameter, strongly fluorescent with fluorescence yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of (x-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml(-1) to about 100 ng ml(-1) with the detection limit of 0.10 ng ml(-1). The coefficient variations (CVs) of the method are less than 9.0%. and the recoveries are in the range of 84-98% for human serum sample measurements. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
After meso-tetra (alpha, alpha, alpha, alpha-O-phenylacetyl benzene)porphyrin combined with McAb 1F2, there was a significant hyperchromic effect, indicating that the combination of porphyrin and antibody is rigid and compact, aromatic amino acids exist at the combining sites of antigen in antibody. These aromatic amino acids are Trys and Trps, but the numbers of Trp are more than that found for Trys. The stochiometric ratio of porphyrin to 1F2 is 1:1, the disassociation constant was determined as(2.084+/-0.216) x 10(-10) mol/L by a method of fluorescence quenching, showing that both have a high affinity.
Resumo:
The kinetics of mucosal and serum antibody response is well as antibody secreting cells (ASCs) production were studied in large yellow croaker following vaccination with inactivated Vibrio harveyi by different routes: oral administration. intraperitoneal (IP) injection and immersion. Indirect ELISA was used to measure the antibody level in serum and cutaneous mucus, and ELISPOT was used to monitor the ASCs derived from gill, blood and head kidney. The data demonstrated that IP injection resulted in the highest antibody levels in the systemic circulation, whereas immersion induced significant antibody levels in mucous. As for the ASCs response, IP injection induced high numbers of ASCs in the head kidney and blood; oral intubation only induced a slight ASCs response in the head kidney: immersion induced a much stronger ASCs response in the gill. These results indicate that mucosal antibodies following immersion immunization are independent of a systemic response and more sensitive, since it could be triggered earlier than serum antibodies. The mucosal antibodies following IP injection immunization may depend oil a systemic immune response. The protective effects of the three vaccination methods were compared by challenging with live V. harveyi. Survival of the three groups of vaccinated fish varied front 40 to 60%. while 100% mortality was found in control fish. Compared with IP and oral vaccination, immersion stimulated higher specific antibody titers in the mucosal system and achieved similar protection, so it is in effective and efficient method for immunizing a large number of fish against V harveyi (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.
Resumo:
A new nonadentate ligand, N, N, N-1, N-1-[2,6-bis(3'-aminomethyl-1 1'-pyrazolyl)-4-phenylpyridine]tetrakis(acetic acid) (BPTA) for a Tb3+ fluorescent complex was synthesized. The Tb3+ complex is strongly fluorescent, having a large fluorescence quantum yield of 1.00 and very long fluorescence lifetime of 2.681 ms in 0.05 M berate buffer of pH 9.1. Streptavidin (SA) was labeled with SPTA by using its succinimidyl monoester, and the BPTA-Tb3+-labeled SA was used in sandwich-type time-resolved fluoroimmunoassay (TR-FIA) of alpha -fetoprotein (AFP) and carcinoembryonic antigen (CEA) in human sera. The Tb3+-labeled SA was also used in competitive type TR-FIA of bensulfuron- methyl (BSM) in water. The detection limits of these assays are 42 pg/mL for AFP, 70 pg/mL for CEA, and 0.4 ng/mL for BSM. In addition, a new simultaneous measurement method for AFP and CEA in a human serum sample was developed by using 4,4'-bis(1 " ,1 " ,1 " ,2 " ,2 " ,3 " ,3 " -heptafluoro-4 " ,6 " -hexanedion-6 " -yl)chlorosulfo-o-terphenyl ((BHHCT)-Eu3+-labeled anti-AFP antibody, biotinylated anti-CEA antibody, and BPTA-Tb3+-labeled SA. The concentrations of AFP and CEA in 39 human serum samples were determined, and the results were compared with those of the independently determined AFP and CEA by TR-FIA with a single-label method. A good correlation was obtained with the correlation coefficients of 0.991 for AFP and 0.994 for CEA.
Resumo:
In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed.
Resumo:
Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00
Resumo:
Based on the theory of the pumping well test, the transient injection well test was suggested in this paper. The design method and the scope of application are discussed in detail. The mathematical models are developed for the short-time and long-time transient injection test respectively. A double logarithm type curve matching method was introduced for analyzing the field transient injection test data. A set of methods for the transient injection test design, experiment performance and data analysis were established. Some field tests were analyzed, and the results show that the test model and method are suitable for the transient injection test and can be used to deal with the real engineering problems.
Resumo:
In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.
Resumo:
Abstract: Avidin layer was bound on the substrate surface of Silicon wafer modified with aldehyde. The interaction between avidin and biotin was adopted for the immobilization of mouse monoclonal biotin-anti-M13 (antibody GP3)-labeled biotin. The surface was incubated in a solution containing phage M13KO7, which was trapped by the antibody GP3 with the interaction between phage M13KO7 and antibody GP3, resulting in a variation of layer thickness that was detected by imaging ellipsometry. The results showed a saturated layer of antibody GP3 with a thickness about 6.9 nm on the surface of the silicon wafer. The specific interaction between phage M13KO7 and antibody GP3 resulted in a variation of layer thickness. The layer of phage M13KO7 bound with antibody GP3 was 17.5 nm in the concentration of 1.1×1010 pfu/mL. Each variation of the layer thickness corresponded to a concentration of phage M13KO7 in the range of 0.1×1010–2.5×1010 pfu/mL, with the sensitivity of 109 pfu/mL. Compared with other methods, the optical protein-chip, requiring only short measurement time, label free, is a quantitative test, and can be visualized. This study could be significant on the interactions between the antibody and the virus, showing potential in the early diagnosis of virosis.
Resumo:
The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.