92 resultados para declarative memory
Resumo:
In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.
Resumo:
The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.
Resumo:
Instrumented nanoindentation was employed to study the depth dependence of nanohardness in a CuAlNi single crystal shape memory alloy that exhibits shape memory effect (SME). A Berkovich indenter and a cube comer indenter were used in this study, and the
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in prediction the transformation behavior of a SMA (Cu-Al-Zn-Mn) under complex thermomechanical load (including complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.
Resumo:
A constitutive model, based on an (n + 1)-phase mixture of the Mori-Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place.
Resumo:
An efficient one-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In this technique, carry propagation is avoided by introducing reference digits to restrict the intermediate carry and sum digits to {1,0} and {0,1}, respectively. The proposed technique requires significantly fewer minterms and simplifies system complexity compared to the reported one-step MSD addition techniques. An incoherent correlator based on an optoelectronic shared content-addressable memory processor is suggested to perform the addition operation. In this technique, only one set of minterms needs to be stored, independent of the operand length. (C) 2002 society or Photo-Optical Instrumentation Engineers.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Two novel read-only memory (ROM) disks, one with an AgOx mask layer and the other with an AgInSbTe mask layer, are proposed and studied. The AgOx and the AgInSbTe films sputtered on the premastered substrates with pit depths of 50 nm and pit lengths (space) of 380 nm are studied by atomic force microscopy. Disk readout measurement is carried out using a dynamic setup with a laser wavelength of 632.8 nm and an object lens numerical aperture (NA) of 0.40. Results show that the superresolution effect happens only at a suitable oxygen flow ratio for the AgOx ROM disk. The best superresolution readout effect is achieved at an oxygen flow ratio of 0.5 with the smoothest film surface. Compared with the AgOx ROM disk, the AgInSbTe ROM disk has a much smoother film surface and better superresolution effect. A carrier-to-noise ratio (CNR) of above 40 dB can be obtained at an appropriate readout power and readout velocity. The readout CNR of both the AgOx and AgInSbTe ROM disks have a nonlinear dependence on the readout power. The superresolution readout mechanisms for these ROM disks are analyzed and compared as well. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel read-only memory (ROM) disk with an AgOx mask layer was proposed and studied in this letter. The AgOx films sputtered on the premastered substrates, with pits depth of 50 nm and pits length of 380 nm, were studied by an atomic force microscopy. The transmittances of these AgOx films were also measured by a spectrophotometer. Disk measurement was carried out by a dynamic setup with a laser wavelength of 632.8 nm and a lens numerical aperture (NA) of 0.40. The readout resolution limit of this setup was λ/(4NA) (400 nm). Results showed that the super-resolution readout happened only when the oxygen flow ratios were at suitable values for these disks. The best super-resolution performance was achieved at the oxygen flow ratio of 0.5 with the smoothest film surface. The super-resolution readout mechanism of these ROM disks was analyzed as well.
Resumo:
Two novel read-only memory (ROM) disks, one with an AgOx mask layer and the other with an AgInSbTe mask layer, are proposed and studied. The AgOx and the AgInSbTe films sputtered on the premastered substrates with pit depths of 50 nm and pit lengths (space) of 380 nm are studied by atomic force microscopy. Disk readout measurement is carried out using a dynamic setup with a laser wavelength of 632.8 nm and an object lens numerical aperture (NA) of 0.40. Results show that the superresolution effect happens only at a suitable oxygen flow ratio for the AgOx ROM disk. The best superresolution readout effect is achieved at an oxygen flow ratio of 0.5 with the smoothest film surface. Compared with the AgOx ROM disk, the AgInSbTe ROM disk has a much smoother film surface and better superresolution effect. A carrier-to-noise ratio (CNR) of above 40 dB can be obtained at an appropriate readout power and readout velocity. The readout CNR of both the AgOx and AgInSbTe ROM disks have a nonlinear dependence on the readout power. The superresolution readout mechanisms for these ROM disks are analyzed and compared as well. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/g K, 1.85 mm(2)/s, and 4.0 W/m K at 300 K to 0.025 J/g K, 1.475 mm(2)/s, and 0.25 W/m K at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/g K and 0.075 J/g K, the thermal diffusivity basically maintains at 0.525 mm(2)/s, and the thermal conductivity decreases from 1.02 W/m K at 320 K to 0.2 W/m K at 440 K. Whether in the crystalline or amorphous state, Ag8In14Sb55Te23 are more thermally active than Ge2Sb2Te5, that is, the Ag8In14Sb55Te23 composites bear stronger thermal conduction and diffusion than the Ge2Sb2Te5 phase-change memory materials.