316 resultados para conductive polymer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The history of solid state electrolyte, the categories, ion transport mechanism, characterization, and the methods to raise the ionic conductivities of polymer electrolytes are reviewed. The further required attentions in the development of polymer electrolytes are discussed in the final part of the review.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A hybrid material with a conductive organic network in an inorganic matrix has been prepared by in-situ hydrolysis/polycondensation of TEOS in an aqueous solution of a solubilized polyaniline. Due to intense hydrogen bonding (indicated by Si-29 NMR and FTIR) the conductive polymer is very well dispersed in the silica matrix. The Figure shows SEM images of a 46/54 wt.-% hybrid at two temperatures (left 20 degreesC, right 100 degreesC).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ac impedance plots of ( PEO)(16) LiClO4-EC composite polymer electrolytes were studied. The equivalent circuit of stainless steel electrode(SS)/composite electrolyte/SS system was applied to explain the ac impedance plots, The results showed that the equivalent circuit could fit the experimental data very well. The ionic conductivity was calculated using the bulk resistance that was obtained from equivalent circuit. The effect of EC on the conductive behavior was explained by the interactions among different species formed in the composite polymer electrolytes. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range followed Arrhenius type, but when EC concentration was larger than 20%, the temperature dependence of conductivity obeyed the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-fibre chemical and optical sensors based on silver nanocrystals modified microstructured polymer optical fibres (MPOFs) were demonstrated. The silver nanocrystals modified MPOFs were formed by direct chemical reduction of silver ammonia complex ions on the templates of array holes in the microstructure polymer optical fibres. The nanotube-like and nanoisland-like Ag-modified MPOFs could be obtained by adjusting the conditions of Ag-formation in the air holes of MPOFs. SEM images showed that the higher concentration of the reaction solution (silver ammonia 0.5 mol/L, glucose 0.25 mol/L), gave rise to a tubular silver layer in MPOF, while the lower concentration (silver ammonia 0.1 M, glucose 0.05 M) produced an island-like Ag nanocrystal modified MPOF. The tubular Ag-MPOF composite fibre was conductive and could be directly used as array electrodes in electrochemical analyses. It displayed high electrochemical activity on sensing nitrate or nitrite ions. The enhanced fluorescence of dye molecules was observed when the island-like Ag-modified MPOF was inserted into a fluorescent dye solution. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve the mechanical performance and water resistance of water-borne conducting polyaniline film, conducting polyaniline/polyurethane-silica hybrid film was prepared in aqueous solution employing silanol-terminated polyurethane and methyltriethoxysilane as sol-gel precursors. The hybrid film showed surface resistivity of 10(8) Omega even though the conducting polyaniline loading was only 10 wt% (or 1.5 wt% of polyaniline), and the mechanical performance as well as water resistance was significantly improved, making it suitable for antistatic application. Therefore, a practical route to water-borne processing of conducting polyaniline is disclosed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-standing conductive films of organic-inorganic hybrids were prepared employing the sol-gel process of (3-glycidoxypropyl)trimethoxysilane (GPTMS) and water-borne conductive polyaniline (cPANI) in water/ethanol solution. The hybrids displayed a percolation threshold for electrical conductivity at a volume fraction of 2.1% polyaniline (PANI); the maximum conductivity of the hybrids reached 0.6 S/cm. GPTMS showed good compatibility with water-borne cPANI during the sol-gel process, and freestanding conductive films were obtained at room temperature. Transmission electron microscopy images of the hybrids indicated that the cPANI was dispersed in the inorganic phase in nanoscale. Because of good confinement of cPANI chains in the inorganic network, water resistance of the hybrid films was significantly improved compared with that of pure cPANI; the electrical conductivity of the films kept stable for 6-7 days soaking in water, whereas it decreased sharply for 1 day soaking for the pure cPANI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyaniline (PANI) in an emeraldine-base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI-CSA) and a matrix, polyamide-66, polyamide-11, or polyamide-1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10(-7) to 10(0) S/cm when the weight fraction of PANI-CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI-CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical resistivity of low-density polyethylene/carbon black composites irradiated by Co-60 gamma-rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure-specific volume-temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (Sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and Sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly-omega-aminoun-decanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c-H,SO,) to form a spinning dope solution. This solution was used to spin conductive PANI/PA11 fibers by wet-spinning technology. As-spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as-spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as-spun fibers. The results showed that the coagulating rate of as-spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as-spun fibers. The microstructure of as-spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrolysis of hyperbranched poly[1,1'-ferrocenylene(methyl)silyne] (5) yields mesoporous, conductive, and magnetic ceramics (6). Sintering at high temperatures (1000-1200 degrees C) under nitrogen and argon converts 5 to 6N and 6A, respectively, in similar to 48-62% yields. The ceramization yields of 5 are higher than that (similar to 36%) of its linear counterpart poly[1,1'-ferrocenylene(dimethyl)silylene] (1), revealing that the hyperbranched polymer is superior to the linear one as a ceramic precursor. The ceramic products 6 are characterized by SEM, XPS, EDX, XRD, and SQUID. It is found that the ceramics are electrically conductive and possess a mesoporous architecture constructed of tortuously interconnected nanoclusters. The iron contents of 6 estimated by EDX are 36-43%, much higher than that (11%) of the ceramic 2 prepared from the linear precursor 1. The nanocrystals in 6N are mainly alpha-Fe2O3 whereas those in 6A are mainly Fe3Si. When magnetized by an external field at room temperature, 6A exhibits a high-saturation magnetization (M-s similar to 49 emu/g) and near-zero remanence and coercivity; that is, 6A is an excellent soft ferromagnetic material with an extremely low hysteresis loss.