82 resultados para chemical shifts
Resumo:
Prediction of C-13-nuclear magnetic resonance chemical shifts for aliphatic amines is performed. The topological, geological and electronic descriptors are generated. To reduce the variables, the best subsets of the descriptors are obtained by using leaps-and-bounds regression analysis. The model is achieved using multiple regression with satisfactory results.
Resumo:
X-ray photoelectron spectroscopy (XPS) combined with Auger electron spectroscopy (AES) have been used to study the oxides from a Si0.5Ge0.5 alloy grown by molecular beam epitaxy (MBE). The oxidation was performed at 1000 degrees C wet atmosphere. The oxide consists of two layers: a mixed (Si,Ge)O-x layer near the surface and a pure SiOx layer underneath. Ge is rejected from the pure SiOx and piles up at the SiOx/SiGe interface. XPS analysis demonstrates that the chemical shifts of Si 2p and Ge 3d in the oxidized Si0.5Ge0.5 are significantly larger than those in SiO2 and GeO2 formed from pure Si and Ge crystals.
Resumo:
本文介绍了薯蓣植物中所含甾体皂甙和甾体皂甙元的化学研究概括。阐述了该属植物皂甙和甙元的结构特点,简要介绍了提取分离及结构鉴定的新方法,并把从此属植物中分离得到的甾体皂甙和甾体皂甙元的来源,理化常数及13C-NMR的化学位移值以表格形式列出。本文的实验部分是从四川产黄山药根茎的乙醇提取物中分离得到六种甾体皂甙,其中三个为E—试剂正反应成分,用化学方法及IR、FDMS、13CNMR、1HNMR、DEPT等技术鉴定了他们的结构,都是薯蓣皂甙元的皂甙。The chemical study in steroid saponins and sapogenins from Dioscorea family is reviewed. Their stuctures are discussed, and the newer techniques used in their isolation and structural elucidation are briefly introduced. A compilation of the saponins and sapogenins from dioscorea family along with their available physical data, source and 13CNMR chemical shifts is included. The experimental paper is that six steroidal saponins were isolated from rhizomes of Dioscorea panthaica Prain et burkill from Sichuan province. Of these saponins the three are positive to Ehrlich reagent. With the aid of IR, FDMS, and NMR spectrometric analyses, their chemical structures have been elucidated as: 3-O-[α-L-rhamnopyranosyl(1→4)]-[β-D-glucopyranosyl]-diosgenin,3-O-[α-L-rhamnopyranosyl(1→2)]-[β-D-glucopyranosyl]-diosgenin; 3-O-[α-L-rhamnopyranosyl(1→2)]-[β-D-glucopyranosyl]-26-O-[β-D-glucopyranosyl]-diosgenin,3-O-[α-L-rhamnopy-ranosyl(1→2)]-[α-L-rhamnopyranosyl(1→4)]-β-D-glucopyranosyl-26-O-[β-D-glucopyranosyl]-diosgenin,3-O-[α-L-rhamnopyranosyl(1→2)]-[β-D-glucopyranosyl(1→3)]-β-D-glucopyranosyl-26-O-[β-D-glucopyranosyl]-diosgenin
Resumo:
The influence of the rigidity of polymer backbones on the side-chain crystallization and phase transition behavior was systematically investigated by a combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and high-resolution solid-state nuclear magnetic resonance spectroscopy (NMR). DSC investigation indicated that the crystallization number of alkyl carbon atoms of the side chains grafted onto the rigid polymer backbone, poly(p-benzamide) (PBA), is much lower than that of the alkyl carbon atoms of the side chains grafted onto the flexible polymer backbone, poly(ethyleneimine) (PEI), implying that the conformational state of the polymer backbones has a strong effect on the side-chain crystallization behavior in comblike polymers. WAXD and FTIR results proved that these two comblike polymers pack into hexagonal (PBA18C) and orthorhombic (PEI18C) crystals, respectively, depending on the adjusting ability of the polymer backbones for particular conformational states. It was also found that the presence of the crystalline-amorphous interphase (delta = 31.6 ppm) in PBA18C detected by solid-state C-13 NMR spectroscopy can be attributed to the rigid PBA backbone, which restricts the mobility of the alkyl side chains.
Resumo:
Artificial neural network (ANN) and multiple linear regression (MLR) were used for the simulation of C-13 NMR chemical shifts of 118 central carbon atoms in 18 pyridines and quinolines. The electronic and geometric features were calculated to describe the environments of the central carbon atom. The results provided by ANN method were better than that achieved by MLR.
Resumo:
Ultrasonic absorption coefficients were measured for butylamine in heavy water (D2O) in the frequency range from 0.8 to 220 MHz and at concentrations from 0.0278 to 2.5170 mol dm(-3) at 25 degrees C; two kinds of relaxation processes were observed. One was found in relatively dilute solutions (up to 0.5 mol dm(-3)), which was attributed to the hydrolysis of butylamine. In order to compare the results, absorption measurements were also carried out in light water (H2O). The rate and thermodynamic parameters were determined from the concentration dependence of the relaxation frequency and the maximum absorption per wavelength. The isotope effects on the diffusion-controlled reaction were estimated and the stability of the intermediate of the hydrolysis was considered while comparing it with the results for propylamine in H2O and D2O. Another relaxation process was observed at concentrations greater than 1 mol dm(-3) in D2O. In order to examine the solution characteristics, proton NMR measurements for butylamine were also carried out in D2O. The chemical shifts for the gamma- and delta-proton in butylamine molecule indicate the existence of an aggregate. From profiles of the concentration dependence of the relaxation frequency and the maximum absorption per wavelength of sound absorption, the source of the relaxation was attributed to an association-dissociation reaction, perhaps, associated with a hydrophobic interaction. The aggregation number, the forward and reverse rate constants and the standard volume change of the reaction were determined. It was concluded from a comparison with the results in H2O that the hydrophobic interaction of butylamine in D2O is stronger than that in H2O. Also, the isotope effect on this reaction was interpreted in terms of the solvent structure.
Resumo:
The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.
Resumo:
The king cobra neuotoxin CM-11 is a small protein with 72 amino acid residues. After its complete assignments of H-1-NMR resonance's were obtained using various 2D-NMR technologies, including of DQF-COSY, clean-TOCSY AND NOESY, the secondary structure was analysed by studying the various NOEs extracted from the NOESY spectra and the distribution of chemical shifts. The secondary structure was finally determined by MCD as follows: a triple-strand antiparallel beta sheet with I20-W36, R37-A43 and V53--S59 as its beta strands, a short alpha helix formed by W30-G35 and four turns formed by P7-K10, C14-G17, K50-V53 and D61-N64.
Resumo:
Four kinds of new molybdotungstoniobic diphosphates with the Dawson structure, formulated as alpha-P2W15Mo2Nb62(7-), are prepared and characterized by IR, UV spectra, polarography and W-183 NMR which show that the same ''polar'' W atoms in the Dawson frames-are substituted. The mean value of W-183 chemical shifts of the ''polar'' group varies linearly with the number of substituted atoms in the opposite polar group.
Resumo:
The larger chemical shift of cerium compounds was discoveried. The chemical states of the cerium compounds were identified by the chemical shifts of Auger energy. The changes in Anger energy and parameters are principally due to the changes in extra-atomic relaxation or polarization energy. The increase of the polarizable properties in anions of cerium compounds corresponds to the increase of Auger energy and parameter. The Auger parameter can be measured more accurately. Ce(CF3COO)(x)Cl-3-x was also studied by ESCA. It is shown that the electron density at cerium atom increases with the increase of x, while the electron density at oxygen atom decreases.
Resumo:
Quantitative structure-toxicity models were developed that directly link the molecular structures of a et of 50 alkYlated and/or halogenated phenols with their polar narcosis toxicity, expressed as the negative logarithm of the IGC50 (50% growth inhibitor
Resumo:
(eta(3)-C3H5)(2)CeCl5Mg2(tmed)(2) combined with HAl(i-Bu)(2) or Al(i-Bu)(3) can initiate the polymerization of isoprene with about 50% of the cis-1, 4 microstructure contained in the polymer. The insertion reaction of isoprene occurring between Ce3+ and e
Resumo:
In chain molecules of 1, 2-PBD, there are two kinds of gauche arrangements, which is the cause of making the spectrum of the secondary carbon in main chain of the polymer split. In such a complex system, the gauche arrangements of the secondary carbon and the tertiary carbon occupy an important position. Hence, the contribution of the tertiary carbon to the chemical shifts of the secondary carbon has a decisive effect on the sequence structure distribution. In comparison the contribution of vinyl groups is ...