153 resultados para binary tree
Resumo:
开发涉及非线性数据结构算法程序的循环不变式一直是形式化方法的难点。本文使用PAR方法开发循环不变式的新策略,对后序遍历二叉树问题循环不变式的开发使用递归定义技术,得到了该问题循环不变式的简单精确的表达形式,简化了算法程序的推导和证明过程;利用PAR平台提供的抽象程序设计语言Ap1a中的数据抽象机制,使所得的算法程序结构简洁清晰且易于证明;最后,使用Dijkstra-Gries标准程序证明法形式证明了该问题的核心算法程序(只有4行代码),并使用PAR平台将Apla程序转换成正确的C++代码。实例的成功进一步说明PAR方法提供的循环不变式的开发技术对推导和证明非线性数据结构算法程序的有效性。
Resumo:
作者设计并实现了一个基于多变元逐步回归的二叉树分类器.在树结构和特征子集的选择中采用了穷举法,比有限制条件的选择更合理更优化.用 FORTRAN 语言实现的“遍历”二叉树,充分利用了 FORTRAN 处理可调数组的能力,并采取适当技巧,从而最大限度地利用了计算机内存.该通用分类器,可用来对任何具有统计数据的模式进行分类.在对白血球的分类中,取得了五类97%,六类92.2%的高识别率.
Resumo:
Based on the fractal theories, contractive mapping principles as well as the fixed point theory, by means of affine transform, this dissertation develops a novel Explicit Fractal Interpolation Function(EFIF)which can be used to reconstruct the seismic data with high fidelity and precision. Spatial trace interpolation is one of the important issues in seismic data processing. Under the ideal circumstances, seismic data should be sampled with a uniform spatial coverage. However, practical constraints such as the complex surface conditions indicate that the sampling density may be sparse or for other reasons some traces may be lost. The wide spacing between receivers can result in sparse sampling along traverse lines, thus result in a spatial aliasing of short-wavelength features. Hence, the method of interpolation is of very importance. It not only needs to make the amplitude information obvious but the phase information, especially that of the point that the phase changes acutely. Many people put forward several interpolation methods, yet this dissertation focuses attention on a special class of fractal interpolation function, referred to as explicit fractal interpolation function to improve the accuracy of the interpolation reconstruction and to make the local information obvious. The traditional fractal interpolation method mainly based on the randomly Fractional Brown Motion (FBM) model, furthermore, the vertical scaling factor which plays a critical role in the implementation of fractal interpolation is assigned the same value during the whole interpolating process, so it can not make the local information obvious. In addition, the maximal defect of the traditional fractal interpolation method is that it cannot obtain the function values on each interpolating nodes, thereby it cannot analyze the node error quantitatively and cannot evaluate the feasibility of this method. Detailed discussions about the applications of fractal interpolation in seismology have not been given by the pioneers, let alone the interpolating processing of the single trace seismogram. On the basis of the previous work and fractal theory this dissertation discusses the fractal interpolation thoroughly and the stability of this special kind of interpolating function is discussed, at the same time the explicit presentation of the vertical scaling factor which controls the precision of the interpolation has been proposed. This novel method develops the traditional fractal interpolation method and converts the fractal interpolation with random algorithms into the interpolation with determined algorithms. The data structure of binary tree method has been applied during the process of interpolation, and it avoids the process of iteration that is inevitable in traditional fractal interpolation and improves the computation efficiency. To illustrate the validity of the novel method, this dissertation develops several theoretical models and synthesizes the common shot gathers and seismograms and reconstructs the traces that were erased from the initial section using the explicit fractal interpolation method. In order to compare the differences between the theoretical traces that were erased in the initial section and the resulting traces after reconstruction on waveform and amplitudes quantitatively, each missing traces are reconstructed and the residuals are analyzed. The numerical experiments demonstrate that the novel fractal interpolation method is not only applicable to reconstruct the seismograms with small offset but to the seismograms with large offset. The seismograms reconstructed by explicit fractal interpolation method resemble the original ones well. The waveform of the missing traces could be estimated very well and also the amplitudes of the interpolated traces are a good approximation of the original ones. The high precision and computational efficiency of the explicit fractal interpolation make it a useful tool to reconstruct the seismic data; it can not only make the local information obvious but preserve the overall characteristics of the object investigated. To illustrate the influence of the explicit fractal interpolation method to the accuracy of the imaging of the structure in the earth’s interior, this dissertation applies the method mentioned above to the reverse-time migration. The imaging sections obtained by using the fractal interpolated reflected data resemble the original ones very well. The numerical experiments demonstrate that even with the sparse sampling we can still obtain the high accurate imaging of the earth’s interior’s structure by means of the explicit fractal interpolation method. So we can obtain the imaging results of the earth’s interior with fine quality by using relatively small number of seismic stations. With the fractal interpolation method we will improve the efficiency and the accuracy of the reverse-time migration under economic conditions. To verify the application effect to real data of the method presented in this paper, we tested the method by using the real data provided by the Broadband Seismic Array Laboratory, IGGCAS. The results demonstrate that the accuracy of explicit fractal interpolation is still very high even with the real data with large epicenter and large offset. The amplitudes and the phase of the reconstructed station data resemble the original ones that were erased in the initial section very well. Altogether, the novel fractal interpolation function provides a new and useful tool to reconstruct the seismic data with high precision and efficiency, and presents an alternative to image the deep structure of the earth accurately.
Resumo:
This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Colloidal crystals formed by two types of polystyrene particles of different sizes (94 and 141 nm) at various number ratios (94:141 nm) are studied. Experiments showed that the formation time of crystals lengthens as the number ratio of the two components approaches 1:1. The dependence of the mean interparticle distance (D-0), crystal structure and alloy structure on the number ratio of the two types of particles was Studied by means of Kossel diffraction technique and reflection spectra. The results showed that as the number ratio decreased, the mean interparticle distance (D-0) became larger. And the colloidal crystal in binary mixtures is more preferably to form the bcc structure. This study found that binary systems form the substitutional solid solution (sss)-type alloy structure in all cases except when the number ratio of two types of particles is 5:1, which results instead in the superlattice structure. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The pure diffusion process has been often used to study the crystal growth of a binary alloy in the microgravity environment. In the present paper, a geometric parameter, the ratio of the maximum deviation distance of curved solidification and melting interfaces from the plane to the radius of the crystal rod, was adopted as a small parameter, and the analytical solution was obtained based on the perturbation theory. The radial segregation of a diffusion dominated process was obtained for cases of arbitrary Peclet number in a region of finite extension with both a curved solidification interface and a curved melting interface. Two types of boundary conditions at the melting interface were analyzed. Some special cases such as infinite extension in the longitudinal direction and special range of Peclet number were reduced from the general solution and discussed in detail.
Resumo:
radiation incident upon a test cell filled with gaseous SF6 has
Resumo:
The results presented are obtained from sound velocity measurements, uniaxial compression tests, Brazilian tests and three-point bending tests. The density of microcracks in the heated rock is studied by means of optical microscopy, SEM and differential strain analysis (DSA).
Resumo:
The problem of the concentration jump of a vapour in the vicinity of a plane wall, which consists of the condensed phase of the vapour, in a rarefied gas mixture of that vapour (A) and another 'inert' gas (B), is considered. The general formulation of the problem of determining the concentration-jump coefficient for dA is given. In the Knudsen layer the simplest model of Boley-Yip theory is used to simplify the Boltzmann equations for the binary gas mixture. The numerical calculation of the concentration jump coefficient for dA for various values of evaporation coefficient of A is illustrated for the case of the equilibrium concentration of B being much greater than that of A, for which experimental data are available.
Resumo:
The experimental and theoretical investigations into the head-on collision between a landing droplet with another one resting on the PDMS substrate were addressed in this talk. The colliding process of the two droplets was recorded with highspeed camera. Four different responses after collision were observed in our experiments: complete rebound, coalescence, partial rebound with conglutination, and coalescence accompanied by conglutination. The contact time between the two colliding droplets was found to be in the range of 10-20 milliseconds. For the complete bouncing case, Hertz contact model was applied to estimate the contact time of the binary head-on colliding droplets with both the droplets considered as elastic bodies. The estimated contact time was in good agreement with the experimental result.
Resumo:
Negabinary is a component of the positional number system. A complete set of negabinary arithmetic operations are presented, including the basic addition/subtraction logic, the two-step carry-free addition/subtraction algorithm based on negabinary signed-digit (NSD) representation, parallel multiplication, and the fast conversion from NSD to the normal negabinary in the carry-look-ahead mode. All the arithmetic operations can be performed with binary logic. By programming the binary reference bits, addition and subtraction can be realized in parallel with the same binary logic functions. This offers a technique to perform space-variant arithmetic-logic functions with space-invariant instructions. Multiplication can be performed in the tree structure and it is simpler than the modified signed-digit (MSD) counterpart. The parallelism of the algorithms is very suitable for optical implementation. Correspondingly, a general-purpose optical logic system using an electron trapping device is suggested. Various complex logic functions can be performed by programming the illumination of the data arrays without additional temporal latency of the intermediate results. The system can be compact. These properties make the proposed negabinary arithmetic-logic system a strong candidate for future applications in digital optical computing with the development of smart pixel arrays. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)00803-X].
Resumo:
In order to realize super-resolution in the 4Pi-confocal systems, the annular binary pure phase filter is designed with the vector diffraction theory. The relations between the super-resolved parameters, such as S, G(T), G(A), and the radial position theta(i) of each zone, are obtained. For simple illumination of the design procedure, three-zone binary pure phase filters are studied, and several numerical simulation results show that in the 4Pi-confocal system with the properly designed binary pure phase filter the super-resolution can be realized with low sidelobes.
Resumo:
The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications. (C) 2008 Optical Society of America.