16 resultados para anthocyanins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

观赏向日葵作为一种新型花卉,具有巨大的市场开发潜力。而花色作为向日葵的重要观赏性状之一,对其的研究却比较少。本文从向日葵花色多样性、花色遗传规律、花色与虫媒传粉的关系及其对向日葵花色遗传的影响做了分析和讨论,利用英国皇家园艺学会比色卡和分光色差仪对向日葵的花色做了归类总结,并且利用高效液相色谱法对向日葵的花青苷成分做了分析研究。 本研究结果表明,彩色向日葵色系可以分为两大类,即黄色系和红色系,其中红色系向日葵的花色变异较小;而黄色系向日葵的花色变异较大,可以再细分为橙黄色和柠檬黄色两个亚类。利用高效液相色谱法测定了39份向日葵舌状花瓣中的花青苷大概有9种(A、B、C、D、E、F、G、H、I),这9种花青苷并不是在所有39份样品中都出现,且红色系向日葵中花青苷的种类较多。花青苷G在红色系和黄色系向日葵中均被检出。对红色向日葵花瓣的花青苷提取液进行多级质谱分析发现,花青苷元类型主要是矢车菊苷元,其糖苷类型主要是和葡萄糖、鼠李糖和/或阿拉伯糖结合;而在纯黄色的向日葵中通过多级质谱分析未检测到这些花青苷,说明矢车菊类花青苷是红色向日葵舌状花红色形成的化学基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过利用高效液相色谱-质谱联用技术,研究110 个不同基因型(包括3 个种和5 个种间杂种)葡萄品种的花色苷含量和成分特点。在所有品种中,最多鉴定出29 种花色苷。对葡萄的花色苷总量来说,一般情况下,欧亚种和欧美杂交种的花色苷含量较低,而野生种和砧木品种显著高于其它的种间杂种;在同一个种内,酿酒品种高于鲜食品种;在大多数高花色苷含量的种质中,二甲基花翠素类花色苷是主要的花色苷,而在低总花色苷量的品种,花青素类和花翠素类花色苷是主要的成分。此外,在欧亚种葡萄中,仅检测到单糖苷类花色苷,而在其它葡萄种质中,既有单糖苷花色苷又有双糖苷花色苷。在欧亚鲜食葡萄中,Pn-3-glucoside 是主要的花色苷,而在欧亚酿酒葡萄中,Mv-3-glucoside 是主要的花色苷。通过主成分分析,最终根据花色苷总量的不同和单、双糖苷含量的不同,110 个品种在散点图中被明显的分成3 部分。 通过连续两年调查3 个欧亚鲜食葡萄杂交组合的亲本和后代的花色苷含量来分析花色苷的遗传特点。共鉴定出16 种花色苷,且均为单糖苷类。母本中各花色苷的比例决定了后代中花色苷含量的比例,但是后代中花色苷的绝对含量不受亲本影响。不论亲本还是后代中,Peonidin 3-O-glucoside 和Malvidin3-O-glucoside 都是含量最高的花色苷。花色苷的有或无是寡基因控制的质量性状,而含量的多少是多基因控制的数量性状。通过主成分分析可以得知:在杂交后代中, peonidin 3-O-glucoside, malvidin 3-O-glucoside, delphinidin3-O-glucoside, cyanidin 3-O-glucoside, petunidin 3-O-glucoside, peonidin3-O-(6-O-coumaryl)-glucoside 和malvidin 3-O-(6-O-coumaryl)-glucoside 是影响果皮中花色苷总量的主要种类。花色苷的含量是一种高广义遗传力的性状,而且这种性状在两年间是稳定的(0.65-0.98)。 5 个不同基因型葡萄品种在成熟过程中果实品质的变化也被研究。始熟期开始后,果粒重量继续增加,果粒较大的鲜食品种增长很慢,而果粒较小的制汁和酿酒品种增长幅度很大;果实内两种主要的糖(葡萄糖和果糖)开始快速上升,且在整个成熟过程中保持1:1;有机酸的含量开始快速下降,苹果酸下降的幅度大于酒石酸。多酚物质在果实始熟期也发生巨大变化,花色苷快速积累。 ‘北紫’和‘梅鹿辄’中的花色苷在成熟前1-2 周达到最大值,‘黑奥林’、‘康可’和‘北醇’在整个成熟过程中花色苷一直增加;对非花色苷类多酚来说,‘黑奥林’和‘梅鹿辄’在果实成熟过程中一直增加,而在另3 个品种中是下降的;花色苷之间以及与黄酮醇之间成正相关,花色苷和酚酸成负相关关系,酚酸和黄酮醇也成负相关关系,黄烷醇物质之间以及与其它类黄酮物质之间成负相关关系。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

目前,随着全球气候变化的加剧,水分短缺更加明显。在干旱与半干旱地区,水分胁迫是影响植物存活和生长的主要限制因子。同时,随着大气平流层中臭氧浓度的减少,过量的紫外辐射(UV-B)到达地球表面,一些地区的植物不可避免地受到增强UV-B 和水分胁迫的共同作用。文献表明在UV-B 增强的情况下,干旱表现为减弱或增强UV-B 对植物的影响,这与种、品种有一定的相关性。另外,脱落酸(ABA)是近年来研究报道最多的信息调控物质,与植物抗旱性途径有较大的关系,但其对植株抗UV-B 的影响还有待于研究。本论文以滇杨(Populus yunnanensis)为模式植物,从形态和生理方面研究了增强UV-B、干旱和脱落酸对它的影响,并探讨了UV-B 与干旱的互作效应以及喷施脱落酸对植株抗旱性和抗UV-B 能力的影响。主要研究结果如下:1. 增强的UV-B 和干旱胁迫都影响了滇杨的形态生长和生理生化反应。它们都导致了滇杨植株的株高、基茎、整株叶面积、平均叶面积、总生物量和净光合速率的显著降低,使得叶片增厚,过氧化物酶(GPX)活性升高,脯氨酸和花色素苷含量增加,膜脂过氧化程度增大。不同的是干旱显著降低了植株叶片数目,增大了根/冠比(Rs)、细根/总根比(Ft)、提高了内源ABA 含量、碳同位素(δ13C)以及紫外吸收物质含量和超氧化物歧化酶(SOD)的活性,而UV-B 对它们没有影响。干旱与UV-B 的复合作用加剧了任一单独胁迫对植株的抑制,表现为更小的株高、基茎、整株叶面积、平均叶面积、总生物量,更低的光合作用和更高的MDA 含量。而且UV-B 辐射降低了干旱胁迫下生物量分配的可塑性,表现为降低了干旱情况下的Rs 和Ft,ABA 的含量也显著下降,复合胁迫下脯氨酸含量和过氧化氢酶(CAT)的活性比任一单独胁迫时都要低。这些实验结果表明,增强的UV-B 与干旱的复合胁迫加剧了对植株的抑制作用。II2. 干旱情况下同时施加外源ABA 提高了植株的根/冠比、细根/总根比和单位面积叶重,即提高了干旱胁迫下植株对生物量分配的可塑性。而且外源ABA 使干旱胁迫下的长期用水效率、ABA 含量、脯氨酸含量、GPX 活性进一步增加,并有效调节了活性氧代谢的平衡,抑制了受旱植株MDA 的增加。结果表明,外源ABA 的喷施提高了滇杨植株的抗旱性。3. 在增强的UV-B 情况下,外源ABA 加剧了UV-B 对滇杨形态生长的抑制效果,表现为进一步降低了滇杨植株的整株叶面积、平均叶面积、单位面积叶重和总生物量,而且ABA 还降低了UV-B 胁迫下的净光合速率和脯氨酸的含量,增大了MDA 的含量。通过以上的数据我们可以看出,外源ABA 虽然提高了滇杨植株的抗旱性,但却加剧了UV-B 胁迫对植株的抑制作用。Currently, drought is one of the most serious environmental stresses. In arid and semi-aridregions, drought is a major constraint imposed on tree survival and growth. The decrease ofozone layer leads to a significant increase in ultraviolet-B (UV-B, 280-320 nm) radiationreaching the earth surface. In some places, plants suffer both UV-B and water stresssimultaneously. Their combination will increase or decrease the sensitivity of plants to UV-Bstress which lies on the species. On the other hand, abscisic acid (ABA), as a plant homoneand growth regulator, is better for plants resistant to drought stress, but it is uncleared aboutthe relationship between exogenous ABA and supplemental UV-B. In the present study, weemployed Populus yunnanensis Dode as a model species to characterize the growth andecophysiological responses of woody plants to supplemental UV-B, drought and exogenous ABA. The results are as follows:1. Both supplemental UV-B and drought affected the morphological, physiological andbiochemical responses of P. yunnanensis. They decreased the plant height, basal diameter,total leaf area, average leaf area, biomass and photosynthesis, and increased specific leaf mass,the activity of guaiacol peroxidase (GPX), the content of proline, anthocyanins andmalondialdehyde (MDA). However, drought decreased the leaf number and increasedroot/shoot ratio, fine root/total ratio, the activity of superoxide dimutase (SOD) and thecontents of ABA, carbon isotope composition (δ13C), UV-absorbing compounds. Whilesupplemental UV-B had no effects on them. The combination of drought and UV-Baugmented the growth inhibtion acting as further lower plant height and smaller basaldiameter, leaf area, biomass and higher MDA content. And compared with drought stress,root/shoot ratio and fine root/total root ratio decreased under the combination stresses. The photosynthesis, proline content and Catalase (CAT) activity became lower under combinationstresses than that of either stress lonely. According to these results, we suggested that,compared with the effect of stress lonely, the combination of supplemental UV-B and droughtdid not mitigate the harmful effect, but augmented it.2. Under drought conditions, exogenous ABA increased root/shoot ratio, fine root/total rootratio and the specific leaf mass. That was to say exogenous ABA increased plant plasticityunder drought conditions. Also ABA content, proline content, activity of GPX and δ13C wereenhanced further. In addition the enhancement of MDA was restrained. So the resultssuggested that exogenous ABA increased the seedling capacity of resistance to drought.3. Under supplemental UV-B conditions, exogenous ABA augmented the growth restrain ofUV-B to seedlings, which acted as further decreased leaf area, specific leaf mass and biomass.Compared with UV-B stress alone, proline content and photosynthesis were decreased andMDA content was increased under the combination of UV-B and ABA. These resultssuggested that although exogenous ABA increased the seedling capacity of resistance todrought, it augmented the growth restrain of supplemental UV-B to P. yunnanensis.