196 resultados para Vertical integration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new broadband filter, based on the high level bandgap in 1-D photonic crystals (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si is designed by the plane wave expansion method (PWEM) and the transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-level bandgaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and the PC device. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new broadband filter, based on the high-order band gap in one-dimensional photonic crystal (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si, has been designed by the plane wave expansion method (PWEM) and transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-order band gaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and PC device. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertical-cavity surface-emitting laser(VCSEL) has proved to be a low cost light source with attractive properties such as surface emission, circular and low divergence output beam, and simple integration in two-dimensional array. Many new applications such as in spectroscopy, optical storage, short distance fiber optic interconnects, and in longer distance communication, are continuously arising. Many of these applications require stable and single-mode high output power. Several methods that affect the transverse guiding and/or introduce mode selective loss or gain have been developed. In this study, a method for improving the single mode output power by using metal surface plasmons nanostructure is proposed. Theoretical calculation shows that the outpout power is improved about 50% compared to the result of standard VCSELs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the production of copper phthalocyanine (CuPc) based p-type hybrid permeable-base transistors, which operate at low voltages having high common-base current gains. These transistors are prepared by evaporating a thin metal layer (Ag or Al) that acts as base on top of a Si substrate that acts as collector. In the sequence CuPc and Au are thermally sublimated to produce the emitter, constituting a quite simple device production procedure with the additional advantage of allowing higher integration due to its vertical architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction. The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended horizontal cracks have! been observed experimentally in a vertical column of saturated sand when a flow of water is forced to percolate upward through it. This paper provides a theory for this phenomenon. It will be shown that the presence of inhomogeneity in permeability along the length of the column is essential for such cracks to develop. It will also be shown that small initial inhomogeneity may be magnified through the transport of the finer component of the sand by percolation. Under certain conditions liquefaction takes place at a section of the sand column causing a crack to initiate and grow there. This theory is found to be in good qualitative agreement with the experimental findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the self-assembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.