120 resultados para Uniformly Convex
Resumo:
A buoy as an offshore structure is often placed over a convex such as a caisson or a submerged island. The hydrodynamic fluid/solid interaction becomes more complex due to the convex compared with that on the flat. Both the buoy and the convex are idealized as vertical cylinders. Linear potential theory is used to investigate the response amplitude and the hydrodynamic force for a buoy over a convex due to diffraction and radiation in water of finite depth. These are derived from the total velocity potential. A set of theoretical added mass, damping coefficient, and exciting force expressions have been proposed. Analytical results of the response amplitude and hydrodynamic force are given. Finally, the numerical results show that the effect of the convex on the response amplitude and hydrodynamic force for the buoy is ignored if the size of the convex is relatively smaller.
Resumo:
The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. In our preceding study, we investigated in detail, the effect of doping mode on the photocatalytic activity of TiO2 films showing that Mn non-uniform doping can greatly enhance the activity. In this study we looked at the effect of doping concentration on the photocatalytic activity of the TiO2 films. In this paper, the thin films were characterized by UV-vis spectrophotometer and electrochemical workstation. The activity of the photocatalyst was also evaluated by photocatalytic degradation rate of aqueous methyl orange under UV radiation. The results illustrate that the TiO2 thin film doped by Mn non-uniformly at the optimal dopant concentration (0.7 at %) is of the highest activity, and on the contrary, the activity of those doped uniformly is decreased. As a comparison, in 80 min, the degradation rate of methyl orange is 62 %, 12 % and 34 % for Mn non-uniform doping film (0.7 at %), the uniform doping film (0.7 at %) and pure titanium dioxide film, respectively. We have seen that, for the doping and the pure TiO2 films, the stronger signals of open circuit potential and transient photocurrent, the better photocatalytic activity. We also discusse the effect of dopant concentration on the photocatalytic activity of the TiO2 films in terms of effective separation of the photon-generated carriers in the semiconductor. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Resumo:
本文提出一个不用 Kuhn- Tucker条件而直接搜索严格凸二次规划最优目标点的鲁棒方法 .在搜索过程中 ,目标点沿约束多面体边界上的一条折线移动 .这种移动目标点的思想可以被认为是线性规划单纯形法的自然推广 ,在单纯形法中 ,目标点从一个顶点移到另一个顶点。
Resumo:
Uniformly carbon-covered alumina (CCA) was prepared via the carbonization of sucrose highly dispersed on the alumina surface. The CCA samples were characterized by XRD, XPS, DTA-TG, UV Raman, nitrogen adsorption experiments at 77 K, and rhodamine B (RB) adsorption in aqueous media. UV Raman spectra indicated that the carbon species formed were probably conjugated olefinic or polycyclic aromatic hydrocarbons, which can be considered molecular subunits of a graphitic plane. The N(2) adsorption isotherms, pore size distributions, and XPS results indicated that carbon was uniformly dispersed on the alumina surface in the as-prepared CCA. The carbon coverage and number of carbon layers in CCA could be controlled by the tuning of the sucrose content in the precursor and impregnation times. RB adsorption isotherms suggested that the monolayer adsorption capacity of RB on alumina increased drastically for the sample with uniformly dispersed carbon. The as-prepared CCA possessed the texture of alumina and the surface properties of carbon or both carbon and alumina depending on the carbon coverage.
Resumo:
A new in situ method was realized by one step laser cladding to produce Ni-base alloy composite coating reinforced by in situ reacted and gradiently distributed TiCp particles. The submicron TiCp particles were formed and uniformly distributed because of the in situ reaction and trapping effect under the rapid solidification condition. And, TiCp particles were of gradient distribution on a macro scale and their volume fraction increased from 1.86% at the layer/substrate interface to a maximum 38.4% at the surface of the layer. Furthermore, the in situ generated TiCp/gamma-Ni interfaces were free from deleterious surface reactions. Additionally, the clad coating also revealed a high microhardness of gradient variation with the layer depth and the superior abrasive wear resistance.
Resumo:
A composite material containing uniformly distributed micrometer-sized Nb particles in a Zr-based amorphous matrix was prepared by suction cast. The resulting material exhibits high fractured strength over 1550 MPa and enhanced plastic strain of about 29.7% before failure in uniaxial compression test at room temperature. Studies of the serrations on the stress-strain curves and the shear bands on the fractured samples reveal that the amplitude of the stress drop of each serration step corresponds to the extent of the propagation of a single shear band through the materials. The composite exhibits more serration steps and smaller amplitude of stress drop due to the pinning of shear band propagation by ductile Nb particles.
Resumo:
Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.
Resumo:
An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.
Resumo:
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 x 10(8) s(-1) to 1.4 x 10(11) s(-1). The results show that two critical strain rates, i.e., 5 x 10(9) s(-1) and 8 x 10(10) s(-1), are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 x 10(9) s(-1), Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {111} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8x10(10) s(-1), Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 x 10(9) s(-1) and 8 x 10(10) s(-1), only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {111} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation. (C) 2007 Published by Elsevier B.V.
Resumo:
In this article, optimization of shear adhesion strength between an elastic cylindrical fiber and a rigid substrate under torque is studied. We find that when the radius of the fiber is less than a critical value, the bonding-breaking along the contact interface occurs uniformly, rather than by mode III crack propagation. Comparison between adhesion models under torque and tension shows that nanometer scale of fibers may have evolved to achieve optimization of not only the normal adhesive strength but also the shear adhesive strength in tolerance of possible contact flaws.
Resumo:
Knowledge of damage accumulation and corresponding failure evolution are prerequisite for effective maintenance of civil engineering so as to avoid disaster. Based on statistical mesoscopic damage mechanics, it was revealed that there are three stages in the process of deformation, damage and failure of multiscale heterogeneous elastic-brittle medium. These are uniformly distributed damage, localized damage and catastrophic failure. In order to identify the transitions from scattering damage to macroscopically localized one, a condition for damage localization was given. The experiments of rock under uniaxial compression with the aid of observations of acoustic emission and speckle correlation do support the concept of localization. This provides a potential approach to properly evaluate damage accumulation in practice. In addition, it is found in the experiments that catastrophic failure displays critical sensitivity. This gives a helpful clue to the prediction of catastrophic failure. (C) 2004 Elsevier Ltd. All rights reserved.