205 resultados para TRANSITION-METAL COMPLEXES
Resumo:
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.
Resumo:
The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.
Resumo:
Three novel polyoxometalate derivatives decorated by transition metal complexes have been hydrothermally synthesized. Compound 1 consists of [(PMo6Mo2V8O44)-Mo-VI-V-V-O-IV{CO (2,2'-bipy)(2)(H2O)}(4)](3+) polyoxocations and [(PMo4Mo4V8O44)-Mo-IV-V-V-O-IV{Co(2,2'-bipy)(2)(H2O)}(2)](3-) polyoxoanions, which are both built on mixed-metal tetracapped [PMo8V8O44] subunits covalently bonded to four or two {Co(2,2'-bpy)(2)(H2O)}(2+), clusters via terminal oxo groups of the capping V atoms. Compound 2 is built on [(PMo8V6O42)-V-VI-O-IV{Cu-I(phen)}(2)](5-) clusters constructed from mixed-metal bicapped [(PMo8V6O42)-V-VI-O-IV](7-) subunits covalently bonded to two {Cu(phen)}(+) fragments in the similar way to 1. The structure of 3 is composed of [(PMo9Mo3O40)-Mo-VI-O-V](6-) units capped by two divalent Ni atoms via four bridging oxo groups.
Resumo:
Two new metal-ore supported transition metal complexes, E{M(phen)(2)}(2)(Mo8O26) (M = Ni or CO; phen = 1,10-phenanthroline) are synthesized by a hydrothermal method and characterized by X-ray crystallography, showing that the octamolybdate possesses a novel unprecedented structure and that [M(phen)(2)](2+) units are covalently bonded to the [Mo8O26](4-) cluster.
Resumo:
The electrocatalytic oxidation of hydrazine (N2H4) on a glassy carbon electrode (GC) modified by monolayer and polymer films of cobalt protoporphyrin dimethyl ester (CoPP) has been studied. Both the monolayer and polymer films of CoPP are very active to the anodic oxidation of N2H4. The activity of CoPP for the anodic oxidation of N2H4 is dependent on the pH of the solution, and the thickness of polymerized CoPP film. The oxidation kinetics were examined by methods of cyclic voltammetry, rotating disc electrodes and steady-state polarization measurement.
Resumo:
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M-2(L)(2) (mu-OCH3)(2) [M = Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC. Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
An organic-inorganic hybrid molybdenum phosphate, Na-2[{Mn(phen)(2)(H2O)} {Mn(phen)(2)}(3){(MnMo12O24)-O-v (HPO4)(6)(PO4)(2) (OH)(6)}] . 4H(2)O (phen=1,10-phenanthroline), involving molybdenum present in V oxidation state and covalently bonded transition metal coordination complexes, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a=16.581(l)Angstrom, b=18.354(1)Angstrom, c=24.485(2)Angstrom, alpha=80.589(l)degrees, beta=71.279(1)degrees, gamma=67.084(1)degrees, V=6493.8(8)Angstrom(3), Z=2, lambda(MoKalpha)=0.71073Angstrom (R(F)=0.0686 for 29,053 reflections). Data were collected on a Bruker Smart Apex CCD diffractometer at 293 K in the range of 1.76 < theta < 28.06degrees using omega-2theta scans technique. The structure of the title compound may be considered to be based on {Mo6O12(HPO4)(3)(PO4)(OH)(3)} units bonded together with {Mn(phen)(2)} subunits into a two-dimensional network. Two types of tunnels are observed in the solid of the title compound.
Resumo:
Reaction of 1,3-cyclohexadiene(tricarbonyl)iron (1) with ortho-substituted aryllithium reagents ArLi (Ar=o-CH3C6H4, o-CH3OC6H4, o-CF3C6H4) in ether at low temperature, and subsequent alkylation of the acylmetalates formed with Et3OBF4 in aqueous solution at 0-degrees-C or in CH2Cl2 at -60-degrees-C gave the 1,3-cyclohexadiene(dicarbonyl)[ethoxy(aryl)carbene]iron complexes (eta4-C6H8)(CO)2FeC(OC2H5)Ar (3, Ar = o-CH3C6H4; 4, Ar = o-CH3OC6H4), and the isomerized product (eta3-C6H8)(CO)2FeC(OC2H5)C6H4CF3-o (5), respectively, among which the structure of 3 has been established by an X-ray diffraction study. Complex 3 is monoclinic, space group P2(1) with a = 8.118(4), b = 7.367(4), c = 14.002(6) angstrom, beta = 104.09(3)-degrees, V = 812.2(6) angstrom3, Z = 2, D(c) = 1.39 g cm-3, R = 0.056, and R(w) = 0.062 for 976 observed reflections. Complexes 3 and 5 were converted into the chelated allyliron phosphine adducts(eta3-C6H8)(CO)2(PR31)FeC(OC2H5)Ar (6, Ar = o-CH3C6H4, R1 = Ph; 7, Ar = o-CH3C6H4, R1 = OPh; 9, Ar = o-CF3C6H4, R1 = Ph), by reaction with phosphines in petroleum ether at low temperatures.
Resumo:
The novel NS-containing zirconacycle complexes Cp2ZrCl[SC(H)NR] (1a, R = C6H5; 1b, R = 2-C10H7; 1c, R= C-C6H11; 1d; R = n-C4H9) were obtained by insertion reactions of Cp2Zr(H)Cl with RNCS. 1(a-d) could react further with Cp2Zr(H)Cl to yield a sulphur-bridging compleX (Cp2ZrCl)2S (2) and a Schiff base RN=CH2. The crystal structure of la has been determined by X-ray analysis.
Resumo:
Using first-principles band structure methods, we have systematically studied the electronic structures, magnetic stabilities, and half-metal properties of 3d transition-metal (TM) doped Rocksalt MgO compounds TMMg3O4 (TM = V, Cr, Mn, Fe, Co, and Ni). The calculations reveal that only CrMg3O4 has a ferromagnetic stability among the six compounds, which is explained by double-exchange mechanism. The magnetic stability is affected by the doping concentration of TM if the top valance band is composed of partially occupied t(2g) states. In addition, CrMg3O4 is a half-metallic ferromagnet. The origins of half-metallic and ferromagnetic properties are explored. The Curie temperature (T-c) of CrMg3O4 is 182 K. And it is hard for CrMg3O4 to deform due to the large bulk modulus and shear modulus, so it is a promising spintronic material. Our calculations provide the first available information on the magnetic properties of 3d TM-doped MgO.
Resumo:
Cupric iodide is a p-type semiconductor and has a large band gap. Doping of Mn, Co, and Ni are found to make gamma-CuI ferromagnetic ground state, while Cr-doped and Fe-doped CuI systems are stabilized in antiferromagnetic configurations. The origins of the magnetic ordering are demonstrated successfully by the phenomenological band coupling model based on d-d level repulsions between the dopant ions. Furthermore, using a molecular-orbital bonding model, the electronic structures of the doped CuI are well understood. According to Heisenberg model, high-T-C may be expected for CuI:Mn and CuI:Ni if there are no native defects or other impurities.
Resumo:
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
Resumo:
By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.
Resumo:
We study the electronic structures and magnetic properties of the anatase TiO2 doped with 3d transition metals (V, Cr, Mn, Fe, Co, Ni), using first-principles total energy calculations based on density functional theory (DFT). Using a molecular-orbital bonding model, the electronic structures of the doped anatase TiO2 are well understood. A band coupling model based on d-d level repulsions between the dopant ions is proposed to understand the chemical trend of the magnetic ordering. Ferromagnetism is found to be stabilized in the V-, Cr-, and Co-doped samples if there are no other carrier native defects or dopants. The ferromagnetism in the Cr- and Co-doped samples may be weakened by the donor defects. In the Mn-, and Fe-doped samples, the ferromagnetism can be enhanced by the acceptor and donor defects, respectively.