33 resultados para State-dependent
Resumo:
We simultaneously recorded auditory evoked potentials (AEP) from the temporal cortex (TCx), the dorsolateral prefrontal cortex (dPFCx) and the parietal cortex (PCx) in the freely moving rhesus monkey to investigate state-dependent changes of the AEP. AEPs obtained during passive wakefulness, active wakefulness (AW), slow wave sleep and rapid-eye-movement sleep (REM) were compared. Results showed that AEP from all three cerebral areas were modulated by brain states. However, the amplitude of AEP from dPFCx and PCx significantly appeared greater attenuation than that from the TCx during AW and REM. These results indicate that the modulation of brain state on AEP from all three cerebral areas investigated is not uniform, which suggests that different cerebral areas have differential functional contributions during sleep-wake cycle. (C) 2002 Elsevier Science Ireland Ltd.. All rights reserved.
Resumo:
A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.
Resumo:
A coupled numerical model with a 2' x 2' resolution grid has been developed and used to simulate five typical typhoon storm surges (5612, 7413, 7910, 8114, and 9711) in the East Sea of China. Three main driving forces have been considered in this coupled model: wave radiation stress, combined wave-current bottom shear stress and wave-state-dependent surface wind stress. This model has then been compared with in situ measurements of the storm set-up. The effect of different driving force components on the total storm surge has also been investigated. This study has found that the coupled model with high resolution is capable of simulating the five typical typhoons better than the uncoupled models, and that the wave-dependent surface wind stress plays an important role in typhoon storm surge-wave coupling in this area and can increase the storm set-up by 1 m. The study of the five typhoon cases has shown that the general coupling effects could increase storm set-up by 20-32%. Thus, it is suggested that to predict typhoon storm surges in the East Sea of China, a storm surge-wave coupled model be adopted. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
The effects of momentum dependent interaction on the kinetic energy spectrum of the neutron-proton ratio r(b)(E-k) in the equation of state of nuclear matter was investigated. We found that the kinetic energy spectrum of the neutron-proton ratio r(b)(E-k) depends sensitively on the momentum dependent interaction and weakly on the in-medium nucleon-nucleon cross section and symmetry potential so that the r(b) (E-k) is a sensitive physical probe for extracting the information of momentum dependent interaction in the heavy ion collisions. At the same time, the comparing investigate between r(b)(E-k) for the neutron-rich collision system and the same mass stable collision system gives a important judgment for extracting the information of momentum dependent interaction in the heavy ion collisions.
Resumo:
研究了动量相关作用对于中子-质子比动能谱rb(Ek)的效应,发现rb(Ek)灵敏的依赖于动量相关作用而弱的依赖于介质中核子-核子碰撞截面和对称势.因此rb(Ek)是提取重离子碰撞中动量相关作用信息的可能探针.同时,对于丰中子弹核和相同质量稳定弹核在相同入射道条件下,丰中子碰撞系统明显加强了动量相关作用对rb(Ek)的效应.故两个碰撞系统rb(Ek)结果的比较为在重离子碰撞中提取动量相关作用的知识提供了另一个重要的判据。
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.
Resumo:
The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.
Resumo:
Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.
Resumo:
It is shown that in a closed equispaced three-level ladder system, by controlling the relative phase of two applied coherent fields, the conversion from absorption with inversion to lasing without inversion (LWI) can be realized; a large index of the refraction with zero absorption can be gotten; considerable increasing of the spectrum region and value of the LWI gain can be achieved. Our study also reveals that the incoherent pumping will produce a remarkable effect oil the phase-dependent properties of the system. Modifying value of the incoherent pumping can change the property of the system from absorption to amplification and enhance significantly LWI gain. If the incoherent pumping is absent, we cannot get any gain for any value of the relative phase. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Er3+ -doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We observed a transition from film to vertically well-aligned nanorods for ZnO grown on sapphire (0001) substrates by metalorganic chemical vapor deposition. A growth mechanism was proposed to explain such a transition. Vertically well-aligned homogeneous nanorods with average diameters of similar to 30, 45, 60, and 70 nm were grown with the c-axis orientation. Raman scattering showed that the E-2 (high) mode shifted to high frequency with the decrease of nanorod diameters, which revealed the dependence of nanorod diameters on the stress state. This dependence suggests a stress-driven diameter-controlled mechanism for ZnO nanorod arrays grown on sapphire (0001) substrates. (c) 2005 American Institute of Physics.
Resumo:
In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.
Resumo:
We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.