134 resultados para Species coexistence
Resumo:
the diffusion modelthe growth dynamics modelG (t, x) J sit-and-wait ;
Resumo:
24 Torus9057583.3%CTFS83.3%19.6% Torus6035 CCA9047684%49020%
Resumo:
24 g(r) : 640-30m5958 -6450(78.1%)(24>1000) Janzen-Connell64Condit (19921994)5m2031.3%5m216441(64.1%)Janzen-Connell 54(84.4%)5m 1cm24 159 (APd) (NTPd)152030m APd 10152030m NTPd 5m DBH >30 cm APd NTPd Janzen-Connell
Resumo:
In reciprocal mutualism systems, the exploitation events by exploiters might disrupt the reciprocal mutualism, wherein one exploiter species might even exclude other coexisting exploiter species over an evolutionary time frame. What remains unclear is how such a community is maintained. Niche partitioning, or spatial heterogeneity among the mutualists and exploiters, is generally believed to enable stability within a mutualistic system. However, our examination of a reciprocal mutualism between a fig species (Ficus racemosa) and its pollinator wasp (Ceratosolen fusciceps) shows that spatial niche partitioning does not sufficiently prevent exploiters from overexploiting the common resource (i.e., the female flowers), because of the considerable niche overlap between the mutualists and exploiters. In response to an exploiter, our experiment shows that the fig can (1) abort syconia-containing flowers that have been galled by the exploiter, Apocryptophagus testacea, which oviposits before the pollinators do; and (2) retain syconia-containing flowers galled by Apocryptophagus mayri, which oviposit later than pollinators. However, as a result of (2), there is decreased development of adult non-pollinators or pollinator species in syconia that have not been sufficiently pollinated, but not aborted. Such discriminative abortion of figs or reduction in offspring development of exploiters while rewarding cooperative individuals with higher offspring development by the fig will increase the fitness of cooperative pollinating wasps, but decrease the fitness of exploiters. The fig fig wasp interactions are diffusively coevolved, a case in which fig wasps diversify their genotype, phenotype, or behavior as a result of competition between wasps, while figs diverge their strategies to facilitate the evolution of cooperative fig waps or lessen the detrimental behavior by associated fig wasps. In habitats or syconia that suffer overexploitation, discriminative abortion of figs or reduction in the offspring development of exploiters in syconia that are not or not sufficiently pollinated will decrease exploiter fitness and perhaps even drive the population of exploiters to local extinction, enabling the evolution and maintenance of cooperative pollinators through the movement between habitats or syconia (i.e., the metapopulations).
Resumo:
Two species, Artemisia frigida Willd. (C-3, semishrub, and dominant on overgrazed sites) and Cleistogenes squarrosa (Trin.) Keng (C-4, perennial bunchgrass, and dominant or codominant on moderately grazed sites) were studied to determine the effects of defoliation, nitrogen (N) availability, competition, and their interactions on growth, biomass, and N allocation in a greenhouse experiment. The main treatments were: two nitrogen levels (NO = 0 mg N pot(-1), N1 = 60 mg N pot(-1)), two defoliation intensities (removing 60% of total aboveground biomass and no defoliation), and three competitive replacement series (monocultures of each species and mixtures at 0.5:0.5). Our results were inconsistent with our hypothesis on the adaptive mechanisms of A. frigida regarding the interactive effects of herbivory, N, and competition in determining its dominant position on overgrazed sites. Cleistogenes squarrosa will be replaced by A. frigida on over-grazed sites, although C. squarrosa had higher tolerance to defoliation than did A. frigida. Total biomass and N yield and N-15 recovery of C. squarrosa in mixed culture were consistently lower than in monocultures, whereas those of A. frigida grown in mixtures were consistently higher than in monocultures, suggesting higher competitive ability of A. frigida. Our results suggest that interspecific competitive ability may be of equal or greater importance than herbivory tolerance in determining herbivore-induced species replacement in semi-arid Inner Mongolian steppe. In addition, the dominance of A. frigida on overgrazed sites has been attributed to its ability to shift plant-plant interactions through (lap colonization, root niche differentiation, and higher resistance to water stress.
Resumo:
Summer diets of two sympatric raptors Upland Buzzards (Buteo hemilasius Temminck et Schlegel) and Eurasian Eagle Owls (Bubo bubo L. subsp. Hemachalana Hume) were studied in an alpine meadow (3250 m a.s.l.) on Qinghai-Tibet Plateau, China. Root voles Microtus oeconomus Pallas, plateau pikas Ochotona curzoniae Hodgson, Gansu pikas O. cansus Lyon and plateau zokors Myospalax baileyi Thomas were the main diet components of Upland Buzzards as identified through the pellets analysis with the frequency of 57, 20, 19 and 4%, respectively. The four rodent species also were the main diet components of Eurasian Eagle Owls basing on the pellets and prey leftovers analysis with the frequency of 53, 26, 13 and 5%, respectively. The food niche breadth indexes of Upland Buzzards and Eurasian Eagle Owls were 1.60 and 1.77 respectively (higher value of the index means the food niche of the raptor is broader), and the diet overlap index of the two raptors was larger (C-ue = 0.90) (the index range from 0 - no overlap - to I - complete overlap). It means that the diets of Upland Buzzards and Eurasian Eagle Owls were similar (Two Related Samples Test, Z = -0.752, P = 0.452). The classical resource partitioning theory can not explain the coexistence of Upland Buzzards and Eurasian Eagle Owls in alpine meadows of Qinghai-Tibet Plateau. However, differences in body size, predation mode and activity rhythm between Upland Buzzards and Eurasian Eagle Owls may explain the coexistence of these two sympatric raptors.
Resumo:
Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.