112 resultados para Space truss structure
Resumo:
The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.
Resumo:
Phycobilisomes (PBS) were isolated from blue-green alga Spirulina platensis. Scanning tunneling microscope was used to investigate the three-dimensional structure of PBS deposited on freshly cleaved highly oriented pyrolytic graphite (HOPG) in ambient condition at room temperature. The results showed that the rods of PBS radiated from the core to different directions in the space other than arrayed in one plane, which was different from the typical hemi-discoidal model structure. The diameter of PBS was up to 70 nm, and the rod was approximately 50 nm in length. Similar results were observed in Langmuir-Blodgett (LB) film of PBS. The dissociated PBS could reaggregate into rod-like structures and easily form two-dimensional membrane while being absorbed on HOPG, however, no intact PBS was observed. The filling-space model structure of PBS in Spirulina platensis with STM from three-dimensional real space at nanometer scale was found, which showed that this new structural model of PBS surely exists in blue-green algae and red algae. The function of this structural model of PBS was also discussed.
Resumo:
A new index, i.e., the periphery representation of the projection of a molecule from 3D space to a 2D plane is described. The results, correlation with toxicity of substituted nitrobenzenes, obtained by using periphery descriptors are much better than that obtained by using the areas (i.e., shadows) of projections of the compounds. Even better results were achieved by using the combination of periphery descriptors and the projections areas as well as the indicated variable K reflecting the action of group NO position on the benzene ring.
Resumo:
The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.
Resumo:
This paper extends two-dimensional model of symmetric magnetostatic flux arches confined in stratified atmospheres (Zhang and Hu, 1992, 1993) to asymmetric models. Numerical results show that the flux structure is influenced greatly by the boundary condition of magnetic field, the force-free factor, the atmospheric pressure distribution and the position of footpoints (especially the width ratio of outlet to entrance, which differs from symmetric case).
Resumo:
Two-dimensional magnetostatic models of flux structure confined in stratified atmosphere are discussed in the present paper. The magnetic field in the flux structure is assumed to be force-free at the first step. Numerical solutions for this nonlinear free boundary problem are obtained by finite element method. Results show clearly the relation between the inside fields and outside pressure, especially the influence of atmospheric pressure distribution on the flux structure.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Cerium-doped lutetium pyrosilicate crystal, Ce:Lu2Si2O7 (Ce:LPS), was grown by the Czochralski method. The segregation coefficient of Ce3+ ion was studied by the ICP-AES method. X-ray diffraction analysis showed that the structure of Ce:LPS crystal was monoclinic symmetry with space group of C2/m. Perfect cleavage planes (110) and imperfect cleavage planes (001) were observed by optical microscope. The reasons why it is difficult to grow crack-free crystals were studied. After optimized growth parameters, a Ce:LPS crystal with dimension of Phi 25 x 30 mm was grown, which is colorless, high optical quality, cracking-free and no inclusions. The transmittance of Ce:LPS crystal from 380 to 800 nm is over 82% and there is no observable absorption. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The m-plane GaN films grown on LiAlO2(100) by metal-organic chemical vapor deposition exhibit anisotropic crystallographic properties. The Williamson-Hall plots point out they are due to the different tilts and lateral correlation lengths of mosaic blocks parallel and perpendicular to GaN[0001] in the growth plane. The symmetric and asymmetric reciprocal space maps reveal the strain of m-plane GaN to be biaxial in-plane compress epsilon(xx)=-0.79% and epsilon(zz)=-0.14% with an out-of-plane dilatation epsilon(yy)=0.38%. This anisotropic strain further separates the energy levels of top valence band at Gamma point. The energy splitting as 37 meV as well as in-plane polarization anisotropy for transitions are found by the polarized photoluminescence spectra at room temperature. (c) 2008 American Institute of Physics.
Resumo:
A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.
Resumo:
Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.
Resumo:
With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.
Resumo:
The generation of internal gravity waves by barotropic tidal flow passing over a two-dimensional topography is investigated. Rather than calculating the conversion of tidal energy, this study focuses on delineating the geometric characteristics of the spatial structure of the resulting internal wave fields (i.e., the configurations of the internal beams and their horizontal projections) which have usually been ignored. it is found that the various possible wave types can be demarcated by three characteristic frequencies: the tidal frequency, wo; the buoyancy frequency, N; and the vertical component of the Coriolis vector or earth's rotation.f. When different possibilities arising from the sequence of these frequencies are considered, there occur 12 kinds of wave structures in the full 3D space in contrast to the 5 kinds identified by the 2D theory. The constant wave phase lines may form as ellipses or hyperbolic lines on the horizontal plane, provided the buoyancy frequency is greater or less than the tidal frequency. The effect that stems from the consideration of the basic flow is also found, which not only serves as the reason for the occurrence of higtter harmonics but also increases the wave strength in the direction of basic flow. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
High-spin level structures of 94,95Mo have been reinvestigated via the 16O(82Se, xnγ)94,95Mo(x = 4, 3) reactions at E(82Se) = 460 MeV. The previously reported level schemes of these two nuclei have been largely modified up to ∼11 MeV in excitation energy due to identifications of some important linking transitions. Shellmodel calculations have been made in the model space of π(p1/2, g9/2, d5/2)4 and ν(d5/2, s1/2, d3/2, g7/2, h11/2)2(3) and compared with the modified level schemes. The structures of the newly assigned high-spin states in 94,95Mo have been discussed.