32 resultados para Smoothing
Resumo:
The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.
Resumo:
The propagation expression of a broadband laser passing through a dispersive wedge is derived on the basis of the Huygens-Fresnel diffraction integral, Smoothing effects caused by the phase perturbation of the dispersive wedge on the intensity profiles are investigated in detail. The phase perturbation of the dispersive wedge induces a relative transverse position shift between the diffraction patterns of different frequency components. The relative transverse position shift is of great benefit to the fill of the intensity peaks of some patterns in the valleys of others when these patterns are overlapped and thus the smoothing effect is achieved. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A scheme of combining technology of lens array (LA) and smoothing by spectral dispersion (SSD) is introduced to improve the irradiation uniformity in laser fusion based on the earlier works on LA. The feasibility of the scheme is also analyzed by numerical simulation. It shows that a focal pattern with flat-top and sharp-edge profile could be obtained, and the irradiation nonuniformity can fall down from 14% with only LA to 3% with both SSD and LA. And this smoothing scheme is depended less on the incidence comparing to other smoothing methods. The preliminary experiment has demonstrated its effectiveness. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Starting from the Huygens-Fresnel diffraction integral, the propagation equations of a broadband laser passing through a dispersive lens and a dispersive wedge are derived. Smoothing effect on the side lobes of the focused pattern is achieved as the broadband laser passes through the lens because of the spectral dispersion of the lens. By inserting a dispersive wedge behind the lens, better smoothing effect is realized because a relative position shift between focused patterns of different frequency components is generated due to the spectral dispersion of the wedge. Smoothing effect on the side lobe is obtained even with small bandwidth of the broadband laser as the wedge is used. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Abstract. Latent Dirichlet Allocation (LDA) is a document level language model. In general, LDA employ the symmetry Dirichlet distribution as prior of the topic-words’ distributions to implement model smoothing. In this paper, we propose a data-driven smoothing strategy in which probability mass is allocated from smoothing-data to latent variables by the intrinsic inference procedure of LDA. In such a way, the arbitrariness of choosing latent variables'priors for the multi-level graphical model is overcome. Following this data-driven strategy,two concrete methods, Laplacian smoothing and Jelinek-Mercer smoothing, are employed to LDA model. Evaluations on different text categorization collections show data-driven smoothing can significantly improve the performance in balanced and unbalanced corpora.
Resumo:
ACM SIGIR; ACM SIGWEB
Resumo:
The use of least-squres polynomial smoothing in ICP-AES is discussed and a method of points insertion into spectral scanning intervals is proposed in the present paper. Optimal FWHM/SR ratio can be obtained, and distortion of smoothed spectra can be avoided by use of the recommended method.
Resumo:
Modelling free-surface flow has very important applications in many engineering areas such as oil transportation and offshore structures. Current research focuses on the modelling of free surface flow in a tank by solving the Navier-Stokes equation. An unstructured finite volume method is used to discretize the governing equations. The free surface is tracked by dynamically adapting the mesh and making it always surface conforming. A mesh-smoothing scheme based on the spring analogy is also implemented to ensure mesh quality throughout the computaiton. Studies are performed on the sloshing response of a liquid in an elastic container subjected to various excitation frequencies. Further investigations are also carried out on the critical frequency that leads to large deformation of the tank walls. Another numerical simulation involves the free-surface flow past as submerged obstacle placed in the tank to show the flow separation and vortices. All these cases demonstrate the capability of this numerical method in modelling complicated practical problems.
Resumo:
The influences of the fluctuation fields are important in many astrophysical environments as shown by the observations, and can not be neglected. On the basis of the first-order smoothing approximation, in the present paper, we demonstrate the magnetostatic equations for both the cases of the conventional turbulence aud the random waves, and discuss the consistent conditions of the equations. In the static problem, the fluctuation Lorentz force(▽×δB)×δB influences the large-scale configurations of magnetic field. To study this influence in detail is quite necessary for the explanations of the observation features, especially for the astrophysical environments where the magnetic fields, including the fluctuation fields, are the dominant factors in the equilibrium of momentum and energy.
Resumo:
Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation, and has been widely applied to different areas in engineering and science. This paper presents an overview on the SPH method and its recent developments, including (1) the need for meshfree particle methods, and advantages of SPH, (2) approximation schemes of the conventional SPH method and numerical techniques for deriving SPH formulations for partial differential equations such as the Navier-Stokes (N-S) equations, (3) the role of the smoothing kernel functions and a general approach to construct smoothing kernel functions, (4) kernel and particle consistency for the SPH method, and approaches for restoring particle consistency, (5) several important numerical aspects, and (6) some recent applications of SPH. The paper ends with some concluding remarks.
Resumo:
Based on the Huygens-Fresnel diffraction integral and Fourier transform, propagation expression of a chirped Gaussian pulse passing through a hard-edged aperture is derived. Intensity distributions of the pulse with different frequency chirp in the near-field and far-field are analyzed in detail by numerical calculations. In the near-field, amplitudes of the intensity peaks generated by the modulation of the hard-edged aperture decrease with increasing the frequency chirp, which results in the improving of the beam uniformity. A physical explanation for the smoothing effect brought by increasing the frequency chirp is given. The smoothing effect is achieved not only in the pulse with Gaussian transverse profile but also in the pulse with Hermite-Gaussian transverse profile when the frequency chirp increases. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
By means of the Huygens-Fresnel diffraction integral, the field representation of a laser beam modulated by a hard-edged aperture is derived. The near-field and far-field transverse intensity distributions of the beams with different bandwidths are analyzed by using the representation. The numerical calculation results indicate that the amplitudes and numbers of the intensity spikes decrease with increasing bandwidth, and beam smoothing is achieved when the bandwidth takes a certain value in the near field. In the far field, the radius of the transverse intensity distribution decreases as the bandwidth increases, and the physical explanation of this fact is also given. (c) 2005 Optical Society of America.
Resumo:
利用光传输理论对ICF驱动器中使用的光谱色散平滑(SSD)技术作了理论分析,并结合典型的随机相位板(RPP)技术,用计算机模拟了使用光谱色散平滑技术前后激光靶面辐照不均匀性的变化及其技术中不同带宽和调制频率下激光靶面辐照不均匀性的变化。
Resumo:
提出将空间域的透镜列阵法和时间域的光谱色散平滑法结合起来实现靶面的均匀辐照.消衍射型透镜列阵能获得边缘陡峭且顶部较平坦的准近场焦斑,光谱色散平滑则能有效地抹平焦斑内部由多光束干涉引起的细密条纹.数值结果显示,通过该方案能获得均匀性较好的焦斑.进一步分析了光谱色散平滑单元中位相调制和光栅的参数对辐照均匀性的影响,发现参数的选取要在焦斑均匀性和能量利用率之间取得合理平衡,以在整体上获得最佳的均匀辐照效果.