176 resultados para RING-DISK
Resumo:
A wall-jet cell incorporating a carbon fibre array ring/glassy-carbon disk electrode has been constructed, and characterized by the cyclic voltammetry and flow-injection techniques. The ring (composed of several microdisks) and glassy-carbon disk electrode, can be used separately for different purposes, e.g., detection in solution without a supporting electrolyte, collection/shielding detection with dual-electrode and voltammetric/amperometric detection with series dual-electrode. The electrode shows better collection and shielding effects than usual ring-disk electrode in quiescent solution and the series dual-electrode in a thin-layer flow-through cell. The detection limit at the ring electrode is comparable with that at a conventional-size electrode, and has been used in the mobile phase without a supporting electrolyte, proving to be a promising detector for normal-phase liquid chromatography.
Resumo:
Rotating minidisk-disk electrode (RMDDE) was developed by replacing ring electrode of rotating ring-disk electrode (RRDE) with a minidisk electrode. Its applications were demonstrated by studying electrochemical reactions of ferricyanide and divalent copper. The replacement of ring electrode by minidisk electrode results in following advantages. First, the fabrication of RMDDE is easier than that of RRDE with the same electrode material. Second, there is more freedom in choosing electrode materials and sizes, since it is difficult to make thin ring electrodes of RRDE with fragile materials. Third, the replacement of ring electrode by minidisk electrode saves electrode materials, especially rare materials. Finally, the substitution of minidisk electrode for ring electrode allows using multiple minidisks for simultaneous monitoring of multiple components. Therefore, RMDDE is a promising generator-collector system, especially when special generator-collector systems are not commercially available, such as corrosion study and electrocatalysis study of new electrode materials.
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.
Resumo:
In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.
Resumo:
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer-by-layer growth of Pt layers on An NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(11) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air-saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as-prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring-disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four-electron reduction on the as-prepared modified electrode with 5 Pt layers and first charge transfer is the rate-determining step.
Resumo:
The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.
Resumo:
Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.
Resumo:
In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.
Resumo:
Through layer-by-layer method [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) and polyoxometalyte were alternately deposited on 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV), UV/visible absorption spectroscopy, and atomic force microscopy (AFM). It was proved that the multilayer films are uniform and stable. CoTMPyP-containing multilayer films exhibit remarkable electrocatalytic activity for the reduction of O-2. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry confirm that P2W18/CoTMPyP multilayer films can catalyze the four-electron almost reduction of O-2 to water in pH > 4.0 buffer solution, while SiW12/CoTMPyP multilayer films catalyze about two-electron reduction of O-2 to H2O2 in pH 1 - 6 buffer solutions. The kinetic constants for O-2 reduction were comparatively investigated at P2W18/CoTMPyP and SiW12/CoTMPyP multilayer films electrodes.
Resumo:
The mechanism of oxygen reduction on polycobaltprotoporphyrin IX dimethyl ester (PolyCoPP) film has been studied by using the rotating ring(Au)-disk(pyrolytic graphite, PG) electrode (RRDE) technique. The PolyCoPP/PG electrode promotes the oxygen reduction via two-electron process which produces peroxide as a main product in O-2-saturated 0.1 mol.dm(-3) NaOH. Once HO2- has been formed, no further reduction to OH- takes place at the disk. When the disk potential shifts to more negative, either the direct reduction of O-2 to OH- or the further reduction of HO2- to OH- occurs.
Resumo:
In this paper, five types of chemically modified electrode (CMEs) prepared with the deposition of platinum particles on various surfaces of glassy carbon (GC) modified with cobalt porphyrin and Nafion(R) solution are characterized using the electron scanning microscope (SEM). Their activities in the four-electron reduction of dioxygen to water on the basis of their electrochemical data from cyclic voltammetric and rotating ring-disk electrode (RRDE) experiments are examined and compared. Platinum particles dispersed on the GC surface adsorbed with the cobalt porphyrin exhibit the highest activity for the electrocatalytic reduction of dioxygen. However it is interesting that the cobalt ion is lost from the center of the porphyrin ring during the preparation of the cobalt porphyrin + Nafion mixture solution, while the porphyrin ring still remains in the Nafion film, as shown by EDX analysis. The incorporation of the porphyrin may change the structure of the Nafion film into a looser form, since the platinum particles dispersed in the film are more readily exposed, resulting in more favourable mass transfer and higher activity for the electrocatalytic reduction of dioxygen.
Resumo:
In order to improve the wear resistance of the gamma-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 degrees C) wear behaviors of laser clad gamma/Cr7C3/TiC composite coatings with different constitution of NiCr-Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary gamma/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough gamma/Cr7C3 eutectics matrix and their stability under high-temperature exposure.
Resumo:
Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.