298 resultados para Quartz crystals


Relevância:

60.00% 60.00%

Publicador:

Resumo:

基于石英晶体的旋光特性,我们提出利用石英晶体平凸透镜和偏振片来实现线偏振光的空间强度整形,通过控制入射光的偏振方向可以方便地改变输出激光的空间强度分布。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus was diffused into CVT grown undoped ZnO bulk single crystals at 550 and 800℃ in a closed quartz tube. The P-diffused ZnO single crystals were characterized by the Hall effect, X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL), and Raman scattering. The P-diffused ZnO single crystals are n-type and have higher free electron concentration than undoped ZnO, especially for the sample diffused at 800℃. The PL measurement reveals defect related visible broad emissions in the range of 420-550nm in the P-diffused ZnO samples. The XPS result suggests that most of the P atoms substitute in the Zn site after they diffuse into the ZnO single crystal at 550℃ ,while the P atom seems to occupy the O site in the ZnO samples diffused at 800℃. A high concentration of shallow donor defect forms in the P-diffused ZnO,resulting in an apparent increase of free electron concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk single crystals b-FeSi2, as a new photoelectric and thermoelectric material, has been successfully grown using chemical vapor transport technique by using iodine as transport agent in a sealed ampoule. The effects of crystal growth condition on quality and morphologies of the single crystals were studied. Both needle-like and grain-like single crystals were gained. By changing substrate temperature, tetrahedral high quality a-FeSi2 single crystals were also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concise pressure controlled isothermal heating vertical deposition (PCIHVD) method is developed, which provides an optimal growing condition with better stability and reproducibility for fabricating photonic crystals (PCs) without the limitation of colloidal sphere materials and sizes. High quality PCs are fabricated with PCIHVD from polystyrene spheres with diameters ranging from 200 nm to 1 mu m. The deep photonic band gap and steep photonic band edge of the samples are most favorable for realizing ultrafast optical devices, photonic chips, and communications. This method makes a meaningful advance in the quality and diversity of PCs and greatly promotes their wide applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal gallium nitride (GaN) is an important technological material used primarily for the manufacture of blue light lasers. An important area of contemporary research is developing a viable growth technique. The ammonothermal technique is an important candidate among many others with promise of commercially viable growth rates and material quality. The GaN growth rates are a complicated function of dissolution kinetics, transport by thermal convection and crystallization kinetics. A complete modeling effort for the growth would involve modeling each of these phenomena and also the coupling between these. As a first step, the crystallization and dissolution kinetics were idealized and the growth rates as determined purely by transport were investigated. The growth rates thus obtained were termed ‘transport determined growth rates’ and in principle are the maximum growth rates that can be obtained for a given configuration of the system. Using this concept, a parametric study was conducted primarily on the geometric and the thermal boundary conditions of the system to optimize the ‘transport determined growth rate’ and determine conditions when transport might be a bottleneck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macrostructure can be changed by changing the morphology of its units. In this article, we use a colloidal template route, combined with hydrothermal growth method, to get the hexagonally arrayed ZnO nanorods on the polycrystalline ZnO substrate. More significantly, through controlling the morphology of ZnO crystals by adding structure-directing agent in the precursor solution, the highly ordered porous ZnO films were obtained instead of ZnO nanorods. This templated solvent-thermal method has great potential in micro/nano-fabrication. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melt flow and temperature distribution in a 200 mm silicon Czochralski furnace with a cusp magnetic field was modeled and simulated by using a finite-volume based FLUTRAPP ( Fluid Flow and Transport Phenomena Program) code. The melt flow in the crucible was focused, which is a result of the competition of buoyancy, the centrifugal forces caused by the rotations of the crucible and crystal, the thermocapillary force on the free surfaces and the Lorentz force induced by the cusp magnetic field. The zonal method for radiative heat transfer was used in the growth chamber, which was confined by the crystal surface, melt surface, crucible, heat shield, and pull chamber. It was found that the cusp magnetic field could strength the dominant counter-rotating swirling flow cell in the crucible and reduce the flow oscillation and the pulling-rate fluctuation. The fluctuation of dopant and oxygen concentration in the growing crystal could thus be smoothed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unstable stacking criteria for an ideal copper crystal under homogeneous shearing and for a cracked copper crystal under pure mode II loading are analysed. For the ideal crystal under homogeneous shearing, the unstable stacking energy gamma(us) defined by Rice in 1992 results from shear with no relaxation in the direction normal to the slip plane. For the relaxed shear configuration, the critical condition for unstable stacking does not correspond to the relative displacement Delta = b(p)/2, where b(p) is the Burgers vector magnitude of the Shockley partial dislocation, but to the maximum shear stress. Based on this result, the unstable stacking energy Gamma(us) is defined for the relaxed lattice. For the cracked crystal under pure mode II loading, the dislocation configuration corresponding to Delta = b(p)/2 is a stable state and no instability occurs during the process of dislocation nucleation. The instability takes place at approximately Delta = 3b(p)/4. An unstable stacking energy Pi(us) is defined which corresponds to the unstable stacking state at which the dislocation emission takes place. A molecular dynamics method is applied to study this in an atomistic model and the results verify the analysis above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discrete slip model which characterizes the inhomogeneity of material properties in ductile single crystals is proposed in this paper. Based on this model rate-dependent finite element investigations are carried out which consider the finite deformation, finite rotation, latent hardening effect and elastic anisotropy. The calculation clearly exhibits the process from microscopic inhomogeneous and localized deformation to necking and the formation of LSBS and reveals several important features of shear localization. For example, the inhomogeneous deformation is influenced by the imperfections and initial non-uniformities of material properties. The inhomogeneous deformation may either induce necking which results in the lattice rotation and leads to geometrical softening, which in turn promotes the formation of CSBS, or induces heavily localized deformation. The microscopic localized deformation eventually develops into the LSBS and results in a failure. These results are in close agreement with experiment. Our calculations also find that the slip lines on the specimen's surface at necking become curved and also find that if the necking occurs before the formation of LSBS, this band must be misoriented from the operative slip systems. In this case, the formation of LSBS must involve non-crystallographic effects. These can also be indirectly confirmed by experiment. All these suggest that our present discrete slip model offers a correct description of the inhomogeneous deformation characterization in ductile crystals.