106 resultados para Quantum Analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

很多快速量子算法都可以归结为隐子群问题的讨论,本文回顾了隐子群问题量子算法的基本思想,分析了群上量子算法的优越性。分析了可以归结为隐于群问题的公钥密码体制,描述了求解椭圆曲线上离散对数问题的量子算法,讨论了隐子群问题量子算法的局限性。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical study on 1.3 mu m GaAs-based quantum dot vertical-cavity surface-emitting lasers (VCSELs) was made. Investigation of the influence of VCSELs on the optical confinement factors and the optical loss and the calculation of the material gain of the assembled InGaAs/GaAs quantum dots. Analysis of the threshold characteristic was made and the multi-wavelength cavity and multilayer quantum-dot stack structure is found to be more suitable for quantum dot VCSELs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some important parameters, such as gain, 3 dB bandwidth and threshold current of 1.3 mu m quantum dot vertical-cavity surface-emitting laser (QD VCSEL) are theoretically investigated. Some methods are developed to improve the VCSEL's modulation response. Significant improvement are prediced for p-type modulation doping. In connection with the threshold characteristic, we found that a structure with short cavity, multilayer quantum dots stack, p-type modulation doping and double intracavity contact on an un-doped DBR is much better suited to high speed quantum dot VCSELs. The parasitic effects of the VCSEL are,analyzed and the influence of packaging of the VCSEL on its modulation responds is analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An n-InP-based InGaAsP multiple-quantum-well wafer was bonded with p-Si by chemical surface activated bonding at 70 degrees C, and then annealed at 450 degrees C. Different thermal expansion coefficients between InP and Si will induce thermal stresses in the bonded wafer. Planar and cross-sectional distributions of thermal stress in the bonded InP-Si pairs were analyzed by a two-dimensional finite element method. In addition, the normal, peeling, and shear stresses were calculated by an analytic method. Furthermore, x-ray double crystalline diffraction was applied to measure the thermal strain and the strain caused by the mismatching of the crystalline orientation between InP (100) and Si (100). The wavelength redshift of the photoluminescence (PL) spectrum due to thermal strain was investigated via the calculation of the band structure, which is in agreement with the measured PL spectra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, growth of GaN-based materials-related quantum dots has become a hot topic in semiconductor materials research. Considerable efforts have been devoted to growth of self-assembled quantum dots of GaN-based materials via MOCVD (Metal Organic Chemical Vapor Deposition) and there are a lot of relevant literatures. There is, however, few review papers for the topic. In this paper, different experimental methods for fabrication of quantum dots of GaN-based materials via MOCVD are critically reviewed and the experimental conditions and parameters, which may affect growth of the quantum dots, are analyzed, with an aim at providing some critical reference for the related future experiment research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the band anticrossing model, the effects of the strain-compensated layer and the strain-mediated layer on the band structure, gain and differential gain of GaInNAs/GaAs quantum well lasers have been investigated. The results show that the GaNAs barrier has a disadvantage in increasing the density of states in the conduction band. Meanwhile, the multilayer quantum wells need higher transparency carrier density than the GaInNAs/GaAs single quantum well with the same wavelength. However, they help to suppress the degradation of the differential gain. The calculation also shows that from the viewpoint of band structure, the strain-compensated structure and the strain-mediated structure have similar features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal-induced interdiffusion in InAs/GaAs quantum dot superlattices is studied by high-resolution x-ray diffraction rocking curve and photoluminescence techniques. With increasing annealing temperatures, up to 300 meV a blueshift of the emission peak position and down to 16.6 meV a narrowing of the line width are found in the photoluminescence spectra, and respective intensity of the higher-order satellite peaks to lower-order ones in the x-ray rocking curves decreases. Dynamical theory is employed to simulate the measured x-ray diffraction data. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness and stress variations caused by interdiffusion are taken into account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The estimated diffusion coefficient is 1.8 x 10(-17) cm(2) (.) s(-1) at 650 degreesC, 3.2 x 10(-17) cm(2 .) s(-1) at 750 degreesC, and 1.2 x 10(-14) cm(2 .) s(-1) at 850 degreesC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In AlGaInP/GaInP multi-quantum well (MQW) lasers, the electron leakage current is a much more serious problem than that in laser diodes with longer wavelength. To further improve the output performance, the leakage current should be analyzed. In this letter, the temperature dependence of electrical derivative characteristics in AlGaInP/GaInP multi-quantum well lasers was measured, and the potential barrier for electron leakage was obtained. With the help of secondary ion mass spectroscopy (SIMS) measurement, theoretical analysis of the potential barrier was presented and compared with the measurement result. The influence of p-cladding doping level and doping profile on the potential barrier was discussed, and this can be helpful in metalorganic chemical vapor deposition (MOCVD) growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compositional distribution of the quantum well and barrier after quantum well intermixing for GaInP/AlGaInP system was theoretically analyzed on the basis of atom diffusion law. With the compositional distribution result, the valence subband structure of the intermixed quantum well was calculated on the basis of 6x6 Luttinger-Kohn Hamiltonian, including spin-orbit splitting effects. TO get more accurate results in the calculation, a full 6-band problem was solved without axial approximation, which had been widely used in the Luttinger-Kohn model to simplify the computational efforts, since there was a strong warping in the GaInP valence band. At last, the bandgap energy of the intermixed quantum well was obtained and the calculation result is of much importance in the analysis of quantum well intermixing experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated.