96 resultados para Physico-chemical properties
Resumo:
Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
Hydrodynamic properties of five newly isolated algal extracellular polysaccharides with putative adhesive properties are described, using a combination of size exclusion chromatography, total or 'multi-angle' laser light scattering and analytical ultracentrifugation. The respective polysaccharides had been extracted from four filamentous cyanobacteria: Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green. algae Desmococcus olivaceus that had been separated from desert algal crusts of the Chinese Tegger Desert. SEC/MALLS experiments showed that the saccharides had, diverse-weight average molecular weights ranging from 4000 to 250,000 g/mol and all five showed either bi-modal or tri-modal molecular weight distribution profiles. Use of the Mark-Houwink-Kuhn-Sakurada (MHKS) scaling relationship between sedimentation coefficient and (weight average) molecular weight for the five samples, assuming a homologous conformation series revealed an MHKS b exponent of (0.33 +/- 0.04), suggesting a conformation between that of a stiff rod (b similar to 0.18) and a random coil (b similar to 0.4-0.5), i.e. a 'flexible rod' or 'stiff coil'. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A series of Sr2+ doped perovskite like oxides La2-xSrxCuO4-lambda (x = 0 similar to 1) were prepared, the structure, lattice parameters, content of Cu3+, oxygen vacancies created by Sr2+ substitution and composition of these complex oxides were studied by XRD and iodic titration method. The redox ability,active oxygen species and surface image were evaluated and analyzed with TPD, TG, XPS and SEM measurements. The catalytic activity for ammonia oxidation over these oxides was tested, and the relationship among the catalytic properties, structure, nonstoichiometric oxygen,redox ability and surface behavior were correlated and some information on the mechanism of ammonia oxidation was obtained.