85 resultados para Nonlinear Schrodinger model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spallation in heterogeneous media is a complex, dynamic process. Generally speaking, the spallation process is relevant to multiple scales and the diversity and coupling of physics at different scales present two fundamental difficulties for spallation modeling and simulation. More importantly, these difficulties can be greatly enhanced by the disordered heterogeneity on multi-scales. In this paper, a driven nonlinear threshold model for damage evolution in heterogeneous materials is presented and a trans-scale formulation of damage evolution is obtained. The damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that some dimensionless numbers govern the whole process of deformation and damage evolution. The effects of heterogeneity in terms of Weibull modulus on damage evolution in spallation process are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling law. In a meso-macroscopic range (similar to 10(5)) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic details governs the phenomena. (C) 1997 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural heterogeneity and stress fluctuation play important roles in the failure process of brittle materials. In this paper, a generalized driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. As an illustration, the failure process of cement material under explosive loading is analyzed using the model. The result agrees well with the experimental one, which proves the efficiency of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We find that the Rashba spin splitting is intrinsically a nonlinear function of the momentum, and the linear Rashba model may overestimate it significantly, especially in narrow-gap semiconductors. A nonlinear Rashba model is proposed, which is in good agreement with the numerical results from the eight-band k center dot p theory. Using this model, we find pronounced suppression of the D'yakonov-Perel' spin relaxation rate at large electron densities, and a nonmonotonic dependence of the resonance peak position of the electron spin lifetime on the electron density in [111]-oriented quantum wells, both in qualitative disagreement with the predictions of the linear Rashba model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the topological defects in the nonlinear O(3) sigma model in terms of the decomposition of U(1) gauge potential. Time-dependent baby skyrmions are discussed in the (2 + 1)-dimensional spacetime with the CP1 field. Furthermore, we show that there are three kinds of topological defects-vortex lines, point defects and knot exist in the (3 + 1)-dimensional model, and their topological charges, locations and motions are determined by the phi-mapping topological current theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a generalized Lagrangian density of 1 + 1 Dimensional O( 3) nonlinear sigma model with subsidiary constraints, different Lagrange multiplier fields and topological term, find a lost intrinsic constraint condition, convert the subsidiary constraints into inner constraints in the nonlinear sigma model, give the example of not introducing the lost constraint. N = 0, by comparing the example with the case of introducing the lost constraint, we obtain that when not introducing the lost constraint, one has to obtain a lot of various non-intrinsic constraints. We further deduce the gauge generator, give general BRST transformation of the model under the general conditions. It is discovered that there exists a gauge parameter beta originating from the freedom degree of BRST transformation in a general O( 3) nonlinear sigma model, and we gain the general commutation relations of ghost field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using phi-mapping topological current theory and gauge potential decomposition, we discuss the self-dual equation and its solution in the SU(N) Dunne-Jackiw-Pi-Trugenberger model and obtain a new concrete self-dual equation with a 6 function. For the SU(3) case, we obtain a new self-duality solution and find the relationship between the soliton solution and topological number which is determined by the Hopf index and Brouwer degree of phi-mapping. In our solution, the flux of this soliton is naturally quantized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The existing three widely used pull-in theoretical models (i.e., one-dimensional lumped model, linear supposition model and planar model) are compared with the nonlinear beam mode in this paper by considering both cantilever and fixed-fixed type micro and nano-switches. It is found that the error of the pull-in parameters between one-dimensional lumped model and the nonlinear beam model is large because the denominator of the electrostatic force is minimal when the electrostatic force is computed at the maximum deflection along the beam. Since both the linear superposition model and the slender planar model consider the variation of electrostatic force with the beam's deflection, these two models not only are of the same type but also own little error of the pull-in parameters with the nonlinear beam model, the error brought by these two models attributes to that the boundary conditions are not completely satisfied when computing the numerical integration of the deflection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear dynamic responses of the tensioned tether subjected to combined surge and heave motions of floating platform are investigated using 2-D nonlinear beam model. It is shown that if the transverse-axial coupling of nonlinear beam model and the combined surge-heave motions of platform are considered, the governing equation is not Mathieu equation any more, it becomes nonlinear Hill equation. The Hill stability chart is obtained by using the Hill's infinite determinant and harmonic balance method. A parameter M, which is the function of tether length, the surge and heave amplitude of platform, is defined. The Hill stability chart is obviously different from Mathieu stability chart which is the specific case as M=0. Some case studies are performed by employing linear and nonlinear beam model respectively. It can be found that the results differences between nonlinear and linear model are apparent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate solitary excitations in a model of a one-dimensional antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky-Moriya antisymmetric exchange interaction term. We employ the Holstein-Primakoff transformation, the coherent state ansatz and the time variational principle. We obtain two partial differential equations of motion by using the method of multiple scales and applying perturbation theory. By so doing, we show that the motion of the coherent amplitude must satisfy the nonlinear Schrodinger equation. We give the single-soliton solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.