266 resultados para Metal organic frameworks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the aromatic dicarboxylic acid and N-donor ligands with different conformations, four Zn(II) metal-organic frameworks, namely [Zn(mfda)(L-1)](1), [Zn-2(mfda)(2)(L-2)]center dot DMF center dot H2O (2), [Zn-2(mfda)(2)(L-3)(H2O)]center dot DMF (3) and [Zn-2(mfda)(2)(L-4)] (4) have been synthesized (mfda = 9,9-dimethylfluorene-2,7-dicarboxylate anion, L-1 = 1,10-phenanthroline, L-2 = 4,4 '-bipyridine, L-3 = 2,5-bis(4-pyridyl)-1,3,4-ocadiazole and L-4 = 1,4-bis(imidazol-1-ylmethyl)benzene). Single-crystal X-ray diffraction has revealed that all compounds exhibit entangled structures. Compound 1 is composed of 1D zigzag chains that are entangled through the pi-pi stacking interactions to generate a three-fold interpenetrating diamond-like networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Zn(II) and Cd(II) metal-organic frameworks, namely, [Zn(DFDA)] (1), [Cd(DFDA)(C2H5OH)] (2), [Zn-2(DFDA)(2)(L-1)(2)](2) center dot 3H(2)O (3), [Cd-2(DFDA)(2)(L-1)(2)] (4), [Zn(DFDA)(L-2)] (5), [Cd(DFDA)(L-2)(DMF)] (6), and [Zn(DFDA)(L-3)] (7) (where DFDA = 9,9-dipropylfluorene-2,7-dicarboxylate anion, L-1 = 1,4-bis(imidazol-1-ylmethyl)benzene, L-2 = 1,1'-(1,4-butanediyl) bis(imidazole), L-3 = 2,2'-bipyridine) have been synthesized under hydrothermal conditions and structurally characterized. Compound 1 exhibits a three-dimensional (3D framework containing one-dimensional (1D) Zn(II)-O clusters, with (4(8).6(7)) topology. Compound 2 contains hydrophobic channels built from infinite 1D Cd(II)-O clusters, with (4(8).5(4).6(3)) topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-soluble tetra-p-sulfonatocalix[4]arene, acting as a four-connected node, bridges the rare earth cations into a 3D porous MOF in which 1D smaller circular hydrophilic channels and larger quadratic ones are lined up along the c axis and interconnected to each other by the calixarene cavities and other interstices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new metal-organic coordination polymers, [Cu(2,3-pydc)(bpp)]center dot 2.5H(2)O (1), [Zn(2,3-pydc)(bpp)]center dot 2.5H(2)O (2) and [Cd(2,3-pydc)(bpp)(H2O)]center dot 3H(2)O (3) (2,3-pydcH(2) = pyridine-2,3-dicarboxylic acid, bpp 1,3-bis(4-pyridyl)propane), have been synthesized at room temvperature. All complexes have metal ions serving as 4-connected nodes but represent two quite different structural motifs. Complexes 1 and 2 are isomorphous, both of which feature 2D -> 3D parallel interpenetration. Each two-dimensional (2D) layer with (4, 4) topology is interlocked by two nearest neighbours, one above and one below, thus leading to an unusual 3D motif. Complex 3 has a non-interpenetrating 3D CdSO4 framework with cavities occupied by uncoordinated water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonpolar a-plane (1120) ZnO thin films have been fabricated on gamma-LiAlO2 (302) substrates via the low-pressure metal-organic chemical vapor deposition. An obvious intensity variation of the E-2 mode in the Raman spectra indicates that there exhibits in-plane optical anisotropy in the a-plane ZnO thin films. Highly-oriented uniform grains of rectangular shape can be seen from the atomic force microscopy images, which mean that the lateral growth rate of the thin films is also anisotropic. It is demonstrated experimentally that a buffer layer deposited at a low temperature (200 degrees C) can improve the structural and optical properties of the epilayer to a large extent. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-polar (1 (1) over bar 00)m-plane ZnO thin film has been prepared on gamma-LiAlO2 (100)substrate via the low pressure metal organic chemical vapor deposition. Obvious intensity variation of the E-2 mode in the polarized Raman spectra and the absorption edge shift in the polarized optical transmission spectra indicate that the m-plane film exhibits optical anisotropy, which have applications in certain optical devices, such as the UV modulator and polarization-dependent beam switch. From the atomic force microscopy images, highly-oriented uniform-sized grains of rectangular shape were observed. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with direrent growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the lowgrowth rate sample shows a greater blue shift of PL peak wave length. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blue shift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnMgO hexagonal-nanotowers/films grown on m-plane sapphire substrates were successfully synthesized using a vertical low-pressure metal organic chemical vapour deposition system. The structural and optical properties of the as-obtained products were characterized using various techniques. They were grown along the non-polar [1 0 (1) over bar 0] direction and possessed wurtzite structure. The ZnMgO hexagonal-nanotowers were about 200 nm in diameter at the bottom and 120 nm in length. Photoluminescence and Raman spectra show that the products have good crystal quality with few oxygen vacancies. With Mg incorporation, multiple-phonon scattering becomes weak and broad, and the intensities of all observed vibrational modes decrease. The ultraviolet near band edge emission shows a clear blueshift (as much as 100 meV) and broadening compared with that of pure ZnO products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 2 theta. locations of ZnO (002) face in the XRD patterns and the E-2(high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopy results show all the samples have a sharp ultraviolet luminescent band without any defects-related emission. Upon the experiments a possible growth mechanism is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO films were grown at low pressure in a vertical metal-organic vapor deposition (MOCVD) reactor with a rotating disk. The structural and morphological properties of the ZnO films grown at different disk rotation rate (DRR) were investigated. The growth rate increases with the increase of DRR. The ZnO film grown at the DRR of 450 revolutions per minute (rpm) has the lowest X-ray rocking curve full width at half maximum and shows the best crystalline quality and morphology. In addition, the crystalline quality and morphology are improved as the DRR increased but both are degraded when the DRR is higher than 450 rpm. These results can help improve in understanding the rotation effects on the ZnO films grown by MOCVD. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis and characterization of Zn-doped InN nanorods by metal-organic chemical vapor deposition. Electron microscopy images show that the InN nanorods are single-crystalline structures and vertically well-aligned. Energy-dispersive X-ray spectroscopy analyses suggest that Zn ions are distributed nonhomogenously in InN nanorods. Simulations based on diffusion model show that the doping concentration along the radial direction of InN nanorod is bowl-like from the exterior to the interior, the doping concentration decreases, and Such dopant distribution result in a bimodal EDXS spectrum of Zn across the nanorod. The study of the mechanism of doping effect is useful for the design of InN-based nanometer devices. Also, high-quality Zn-doped InN nanorods will be very attractive as building blocks for nano-optoelectronic devices.'