62 resultados para Metal ceramic alloys
Resumo:
A systematic approach is proposed to obtain the interfacial interatomic potentials. By inverting ab initio adhesive energy curves for the metal-MgO ceramic interfaces, We derive interfacial potentials between Ag and O2-, Ag and Mg2+, Al and O2-, Al and Mg2+. The interfacial potentials, obtained from this method, demonstrate general features of bondings between metal atoms and ceramic ions.
Resumo:
During the past 22 months, the preparation and application of novel porous metal/ceramic membrane materials have been extensively explored in the area of membrane science and catalysis. Thus, new preparation methods and new application concepts in membrane catalysis have been developed.
Resumo:
The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered. Two different fracture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films. A set of experiments have been done on the mechanism of copper films delaminating from silica substrates, based on which the peak interface separation stress and the micro-length scale of material, as well as the dislocation-free zone size are predicted.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.
Resumo:
探索和建立不同尺度理论之间的关联模式是科学研究的重要课题,本文基于跨尺度模型着重探讨了金属陶瓷界面的凝聚能和原子结构问题。本文遵循原始Peierls-Nabarro模型的基本思想,提出了一种处理一维界面失配位错组的新方法。在这个推广的Peierls-Nabarro模型中,本文得到了一个简单而且准确的解析解,此解反映了失配位错的核结构、能量与失配度、剪切模量之间的依赖关系。当界面剪切模量较强而失配度较小时,界面的结构可以用一组奇导师Volterra位错来描述,这与一些原子模拟结果一致。采用这一简单的模型,引入第一原理计算得到的数据,此模型可以估算金属陶瓷界面的凝聚能。一维界面失配位错组的Peierls-Nabarro模型还被解析推广描述一大类较宽的位错。在模型中我们引进了一个参数a,通过控制参数a,我们可以系统地改变失配位错芯的宽度、剪切应力的分布和弹性恢复力。随着a增加,位错宽度增加,同时弹性恢复力和失配位错应力的幅度减少。当界面剪切模量强和失配度小时,失配位错的宽度近似线性反比于弹性恢复力的幅度大小。同时当界面剪切模量和失配度固定时,失配能、弹性能和总的界面能随a的增加而减少。界面能和恢复力律形式密切相关,当界面剪切模量弱和失配度大时,这种依赖关系更强。考虑到界面常常是在晶格两个方向都有失配,本文还引进了描述界面周期失配位错的二维广义Peierls-Nabarro模型,使得我们能够定量地研究界面的结构和能量。文中定量分析了广义堆垛能γ面对界面失配位错的结构和能量的影响,分析了位错网中两种位错组的相互作用。当界面剪切模量τ_0变大和失配度f变小时,随着位错核区占整个界面的比重下降,γ面的形状对界面能量和结构影响减弱,结果两种位错组之间的相互作用也减弱。此外γ面的变化还有可能导致位错网结构的转变,也就是导致界面结构的转变。应用此模型,本文还研究了金属-陶瓷Ag/MgO(100)界面,给出了界面的能量和原子结构。文中得出结论:在Ag/MgO(100)界面将会形成{1/2<110>; <110>}类型的位错网。此外由于界面失配位错的形成,Ag/MgO(100)界面凝聚能的理论值900mJ/m~2将减少214mJ/m~2,最终成为686mJ/m~2。基于第一原理赝势平面波的总能计算,文中给出了金属陶瓷Al/MgO(100)界面弛豫和未弛豫时的广义堆垛能面。然后结合第三章发展的广义二维Peierls-Nabarro模型,详细研究了金属陶瓷Al/MgO(100)界面的原子结构和界面能。文中得出的“在Al/MgO(100)界面将会形成{1/2<110>; <110>}类型位错网”的推论,证实了Vellinga等的猜测;文中还预测了凝聚能的理论是在600mJ/m~2(未弛豫情形)和670mJ/m~2(弛豫情形)之间。这个应用表明此方法能够容易地建立连续介质理论和第一原理计算之间的联系,实现理论上的跨尺度。本文最后提出了一种得到界面原子有效对势的反演方法。通过反演金属-MgO陶瓷界面的第一原理计算的凝聚能曲线,我们得到了一些金属原子和陶瓷离子之间的对势,此对势反映了金属陶瓷键合的特性。本文的反演方法提供了通过第一原理计算数据来拟合界面原子对势的一种可行性途径。这种方法可归结为第一类尺度关联理论,即单向的跨尺度关联模式。
Resumo:
An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.
Resumo:
In the present study, peel tests and inverse analysis were performed to determine the interfacial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90 degrees, 135 degrees and 180 degrees were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result.
Resumo:
Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.
Resumo:
Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.