165 resultados para Melting point
Resumo:
The temperature behaviour of an Al bicrystal with surfaces consisting of (110) and (111) crystals is simulated using molecular dynamics. The result shows that the (110) crystal losses its crystalline order at 820K, whereas the disorder does not propagate through the (111) crystal at this temperature. Instead, some disordered atoms are recrystallized into the (111) crystal and the initial grain boundary changes into a stable order-disorder interface. Thus, it was discovered that at a temperature near its melting point, the (111) crystal grew and obstructed the propagation of disorder. Such an obstruction is helpful for understanding melting.
Resumo:
The nearest-neighbour Lennard-Jones potential from the embedded-atom method is extended to a form that includes more than nearest neighbours. The model has been applied to study melting with molecular dynamics. The calculated melting point, fractional volume change on melting, heat of fusion and linear coefficients of thermal expansion are in good agreement with experimental data. We have found that the second and third neighbours influence the melting point distinctly.
Resumo:
We investigate the size effect on melting of metal nanoclusters by molecular dynamics simulation and thermo dynamic theory based on Kofman's melt model. By the minimization of the free energy of metal nanoclusters with respect to the thickness of the surface liquid layer, it has been found that the nanoclusters of the same metal have the same premelting temperature T-pre = T-0 - T-0(gamma(su) - gamma(lv) - gamma(sl))/(rhoLxi) (T-0 is the melting point of bulk metal, gamma(sv) the solid-vapour interfacial free energy, gamma(sl) the liquid-vapour interfacial free energy, gamma(sl),l the solid-liquid interfacial free energy, p the density of metal, L the latent heat of bulk metal, and xi the characteristic length of surface-interface interaction) to be independent of the size of nanoclusters, so that the characteristic length of a metal can be obtained easily by T-pre, which can be obtained by experiments or molecular dynamics (MD) simulations. The premelting temperature T-pre of Cu is obtained by AID simulations, then xi is obtained. The melting point T-cm is further predicted by free energy analysis and is in good agreement with the result of our MD simulations. We also predict the maximum premelting-liquid width of Cu nanoclusters with various sizes and the critical size, below which there is no premelting.
Resumo:
Poly(ether ether ketone)/poly(ether diphenyl ether ketone) blend containing 30 wt% PEDEK was used to investigate the melting behaviour of immiscible PEEK/PEDEK blends. The results measured from differential scanning calorimetry (d.s.c.) and wide-angle X-ray diffraction (WAXD) showed that immiscible PEEK/PEDEK blends isothermally crystallized at a temperature between Tg and Tm-2 (PEEK's normal melting point) from the glassy state also exhibited the multi-melting behaviour like poly(aryl ether ketones) homopolymers. In addition, the low-temperature melting peak was independent of composition of poly(aryl ether ketones) blends and only associated with the thermal history. (C) 1997 Elsevier Science Ltd.
Resumo:
The melting of the nascent state nylon 1010 samples melt condensation polymerized with different M(eta) have been studied by DSC. The relations of melting point, content of higher order crystal with M(eta) are similar, the plots like a peak, at M(eta)=1.48x10(4) have the maximum. The melting heat, melting entropy and crystallinity are decreased gradually with M(eta) increasing.
Resumo:
The surface tension of molten tin has been determined by the sessile drop method at The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P-O2) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P-O2 = 2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mNm(-1) K-1, respectively. However, at high P-O2 (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P-O2 is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173degrees, and the wettability is poor.
Resumo:
Molecular dynamics (MD) simulations using Morse interaction potential are performed in studies of [110] symmetrical tilt grain boundary (GB) structures with mis-orientation angles 50.5 degrees(Sigma 11), 129.5 degrees(Sigma 11), 70.5 degrees(Sigma 3) and 109.5 degrees(Sigma 3) at various tempratures. The GB structures are found to start local disordering at about 0.5T(m)(T-m is the melting point of aluminium) for 50.5 degrees(Sigma 11), 0.32T(m) for 129.5 degrees(Sigma 11) and 0.38T(m) for 70.5 degrees(Sigma 3), respectively. These results agree with conclusions deduced from the anelastic measurements. But, for twin-boundary structure 109.5 degrees(Sigma 3), this disordering has not been found even when temperature increases up to 0.9T(m).
Resumo:
采用中频感应提拉法生长出尺寸为Ф60mm×110mm的Ce:Lu1.6Y0.4SiO5(LYSO)晶体,与LSO晶体相比,LYSO晶体的优势是提高了晶体质量、降低了熔点和原料成本等.在室温下测试了LYSO晶体的透过光谱、激发光谱和发射光谱,结果表明Y的加入使LSO晶体的吸收边向短波方向偏移.Ce^3+的4f^1→5d^1跃迁吸收导致紫外区产生三个吸收带.发射光谱具有Ce^3+典型的双峰特征,经Gaussian多峰值拟合,双峰395nm和418nm归属于Ce1发光中心,而435nm的发光峰与Ce2发光中心有
Resumo:
In this paper, high optical quality cerium-doped lutetium pyrosilicate(LPS:Ce) crystal has been grown by Czochralski method with the seed oriented along cleavage plane (1 1 0). The structure, segregation coefficient of Ce3+ and optical characterization of LPS:Ce crystal have been compared with those of LSO:Ce crystal. The results show that LPS:Ce has the advantage over LSO:Ce by having a larger segregation coefficient of Ce3+, lower cost of starting material, lower melting point and only one luminescence mechanism. Thus, LPS:Ce crystal offers an attractive alternative to LSO:Ce for scintillator applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
采用快速提拉法生长出了透明、完整的γ-LIAlO2晶体,但是晶体的高熔点和易挥发性限制了γ-LiAlO2晶体质量.采用气相传输平衡法(vapor transport equilibration technique,VTE)工艺对晶体改性,半高宽(FWHM)值从116.9arcsec降至44.2arcsec,继续升高VTE处理温度至1300℃,FWHM值反而升高至55.2arcsec.快速提拉法生长出来晶体,[100]方向和[001]方向的热膨胀系数分别为17.2398×10^-6/K,10.7664×10
Resumo:
To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper, bioconversion of trans-cinnamic acid(t-Ca)to L-phenylalanine (L-phe) has been investigated by using immobilized yeast cells with induced L-phe Ammonia-lyase(PAL, EC.4.3.1.5) as biocatalysts. The contents are the following. (1) Thirty strains of yeasts, including two genera (Rhodotorula, Sporobolomyces), six species (R. glutinis R. minuta,R.rubra,R.sineses,R.roseus and S.salmonicolor)were screened for their ability to converse the substrates, t-Ca and ammonia, to the product, L-phe, by using yeast cells as biocatalyst, and primary evaluation for PAL activity of the selected strains was investigated. From the results of the screening experiments, it was found that 22 strains were able to produce L-phe from t-Ca with the range of conversion yield from 2% to 67%. Studies on PAL formation time course during cultivation show that the maximum PAL activity of several different strains ranges from 2.3 to 14.4×10-3U/mg cell dry weight. The biomass of tested strains at their maximum enzyme activity is also greatly varied. (2)One of the selected strains, R. rubra as 2.166, was used for immobilized cells as biocatalysts to produce L-phe. The optimum conversion conditions and effective stablization agents were investigated. The results shown that polyacrylamide gel was chosen as a suitable matrix for immobilization of the yeast cells, and it can retain 88% of the PAL activity in the reverse direction at the following reactive conditions: [t-Ca]: 34mM. [NH4OH]: 6.OM.PH10.00, temperature: 30℃. (3) The effects of various kinds of effectors on the production of L-phe were also examined. Membrane permeabilizing agents can stimulate L-phe synthesis, but make the stability of PAL decline greatly. Polyalchoholic agents and glutamic acid were very effective for the stabilization of PAL. At the presence of glutamic acid (5%), the half life of L-phe productivity with the immobilized cells was extended to 192 hours, which was much higher than most of that having been reproted, while the half life of resting cells was only about 15 hours. (4) Use of initial velocity studies on the kinetics of enzyme-catalized reaction indicated that the apparent Km value was 13.0mM for the immobilized cells, and 4.8mM for the resting cells. Thermostability of the immobilized cells was better than the resting cells. Fluid bed bioreactor is more effective than batch bioreator in prolonging the thermostability of the biocatalysts. (5) CGA- 688 resin column chromatographic procedure was employed in the isolation and purification of L-phe, t-Ca and other substances from the reactire mixture. (6) Preparative-scale production of L-phe on a level of gram amount by immobilized cells from the culture broth of R. rubra AS2.166 allowed for the conversion yield with 30%. The characteristic physico-chemical criteria (including melting point, optical activity, elements analysis, IR, NMR) are the same with the standard L-phe. 本文报告了利用诱导的苯丙氨酸解氨酶 (PAL.EC.4.3.1.5)催化反式肉桂酸(t-Ca)氨加 成制备L-苯丙氨酸(L-phe)的研究,主要内容为:(1) 我们搜集了三十株酵母菌株,利用全细胞转化t-Ca生成L-phe的能力进行了直 接筛选,并对其PAL活性水平进行了初步评估研究。研究结果表明,其中22株酵母具有转化t-Ca生产L-phe的能力,它们包括 Rhodotorula glutinis,R.rubra, R.sineses 和Sporobolomyces roseus 的菌株,转化率在2-67%。细胞生长和PAL形成过程的研究 表明,不同菌株PAL最大活力在2.3-14.4×10-3U/mg 细胞干重,达到最大PAL活性时各株酵母的生长情况也极不一致。(2) 利用筛 选出的一株深红酵母R.rubra AS2.166 作为供试菌株,研究了细胞固定化条件下生物转化的最适条件及PAL在固定化条件下的稳定 性。结果表明以聚丙烯酰胺凝胶包埋法较为理想,能使细胞合成L-phe活力保持88%,最适t-Ca浓度为34mM,最适NH4OH浓度为6M,最 适PH10.0,最适温度45℃。(3) 多种效应物对L-phe 合成的影响研究表明:表面活性剂能刺激L-phe的合成,但使PAL稳定性下降。 多羟基化合物及Glu对PAL的稳定十分有效在有Glu存在下,能使固定化细胞合成L-phe的半寿期达192小时左右,高于大部分现已报 导的固定化结果。(4) 用初速度法研究了深红酵母AS2.166中PAL的酶促反应特征,测得固定化细胞对t-Ca的表观米氏常数Km为 13.0mM,全细胞为4.8mM,细胞固定后热稳定性提高。(5) 建立了适合低浓度分离纯化产物与底物的聚苯乙烯大孔树脂柱层析技术 ,能使L-phe与t-Ca及产物混合物中其它成分有效分开。(6) 利用固定化的R.rubra AS2.166细胞所做的制备实验能够使L-phe的产 率达到30%左右,其主要的理化指标(包括熔点、比旋光度、元素分析、IR、NMR等)与标准L-phe一致。
Resumo:
本文报告了丝状真菌单宁酶发酵五倍子及有机溶剂中酶法合成没食子酸丙酯的研究。利用单宁和/或五倍子诱导丝状真菌产生单宁 酶的原理,借助二级发酵程序,对从天然源得到的75株菌进行了生物转化实验研究。选择出既能水解单宁或五倍子成没食子酸,又 能把没食子酸和丙醇合成没食子酸丙酯,而且生物催化活性都较高的1株菌,这株菌经初步鉴定为黑曲霉(Aspergillus niger No.17)。随后对它开展了产酶条件和参数优化实验,得出了最佳培养条件。立足于参数优化实验方案的基础上,经由液体培养发酵 制备单宁酶制剂,并把该酶通过化学手段共价结合到一种新型载体—聚乙烯醇和戊二醛反应生成的缩醛上,制备得到固定化单宁酶 。这种固定化生物催化剂在两种有机介质体系中都具有逆向催化合成没食子酸丙酯的能力。最后建立起来一条有效可行的微生物酶 法制备没食子酸的技术途径,没食子酸产率达到70%。对这种物质进行元素 分析:含C,49.45%;含H,3.63%。它的熔点为237℃~243 ℃,三种溶剂系统的TLC均只给出一个斑点。这些数据都与标准品一致。有机溶剂中酶法合成没食子酸丙酯的技术途径已经建立。 水溶性单宁酶在潜溶剂体系中也能催化上述酯化反应,反应混合物中的PG浓度为16.4mmol/L,制备薄层被用于分离反应混合物所含 的PG,这种产物被红外、质谱及三种溶剂系统的TLC等方法鉴定,确证为目标产物。在这一学位论文的实验研究过程中,还包括一 些生化分析方法的建立和应用,这些方法用于鉴定底物和产物及测定它们的浓度,其内容主要包括TLC定性/半定量分析、元素分析 、质谱、红外等手段的综合运用。本工作为开发我国特有的天然产物资源—五倍子的生物化工加工技术及非水相生物催化技术的开 发,提供了有用的基础数据资料,具有应用基础研究工作的重要性。In this thesis, the studies on the fermentation of Chinese gallotannin by filamentous fungi with tannase activity and enzymatic synthesis of propyl gallate(PG) in organic solvents were described through these biocatalysts. Based on the principles of induction enzyme, the tannase produced from filamentous fungi by adding tannic acid(TA) and/or Chinese gallotannin into media was investigated, and the screening experiments of bioconversion were done with 75 strains by means of a two-stage fermentation procedure. These strains were isolated with the enrichment culture technique from natural sources. Hence we selected one strain (Aspergillus niger No.17) that can not only catalyze the hydrolyses of TA and/or Chinese gallotannin into gallic acid(GA) in the liquid cultures, but also be used to synthesize PG from propanol and GA in the non-aqueous media. At the same time both of its biocatalytical activities were higher. This strain was calssified to be Aspergillus niger by the primary identification. Then optimum conditions for production of the tannase and its parameters were examined. In this way, one set of optimum culture conditions was selected. Making use of the optimum proposal, the tanase was prepared through a liquid fermentation procedure. The enzyme was convalently coupled to a new type of carrier which was made chemically from polyvinyl alcohol(PVA)and glutaraldehyde. The immobilized enzymes were able to synthesize PG reversely in two organic media. Finally, an effective enzymatic technique for production of GA was developed. The yield of GA products was up to 70%。Element analysis for this substance: calce: C, 49.42%; H, 3.56%; found: C, 49.45%, H, 3.63%. Its melting point was 237℃~ 243℃ and TLCs on three solvent systems gave only one spot respectively. These data were identical with theauthentic GA. The enzymatic synthesis of PG in organic solvents was extablished with reverse route of tannase catalytical hydrolysis. Aqueous enzyme perparation also catalyzed above esterification in a buffer system. The PG concentration in the reaction mixture was 16.4mmol/L. The reparative-scale TLC was used to isolate PG from the reaction mixture. This product separated was identified by IR, MS and TLC on three solvent systems. In this study of thesis, some biochemical analytical mehtods were developed and used to identify substrates and products, and to determinate their concentration. These methods, including TLC qualitative/half quantitative analysis, element analysis, MS, IR and so on, were useful, available and performable. This work provided basic data and information for developing the biochemical engineering and bio-processing of Chinese gallotannin-a special natural resource in China and the non-aqueous phase biocatalysis. Thus, this study possesses importance in the applied and basic research work.
Resumo:
In this paper, an investigation on the micro-structure of an Fe-base oxide-dispersion-strengthened (ODS) alloy irradiated with high-energy Ne-20 ions to different doses at a temperature around 0.5T(m) (T-m is the melting point of the alloy) is presented. Investigation with the transmission electron microscopy found that the accelerated growth of voids at grain-boundaries, which is usually a concern in conventional Fe-base alloys under conditions of inert-gas implantation, was not observed in the ODS alloy irradiated even to the highest dose (12000 at.ppm Ne). The reason is ascribed to the enhanced recombination of point defects and strong trapping of Ne atoms at the interfaces of the nano-scale oxide particles in grains. The study showed that ODS alloys have good resistance to the high-temperature inter-granular embrittlement due to inert-gas accumulation, exhibiting prominence of application in harsh situations of considerable helium production at elevated temperatures like in a fusion reactor.