94 resultados para Local Productive Arrangement
Resumo:
A two-dimensional axisymmetric numerical model is presented to study the influence of local magnetic fields on P-doped Si floating zone melting crystal growth in microgravity. The model is developed based on the finite difference method in a boundary-fitted curvilinear coordinate system. Extensive numerical simulations are carried out, and parameters studied include the curved growth interface shape and the magnetic field configurations. Computed results show that the local magnetic field is more effective in reducing the impurity concentration nonuniformity at the growth interface in comparison with the longitudinal magnetic field. Moreover, the curved growth interface causes more serious impurity concentration nonuniformity at the growth interface than the case with a planar growth interface.
Resumo:
Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.
Resumo:
In this paper, wavelet,transform is introduced to study the Lipschitz local singular exponent for characterising the local singularity behavior of fluctuating velocity in wall turbulence. I, is found that the local singular exponent is negative when the ejections and sweeps of coherent structures occur in a turbulent boundary layer.
Resumo:
Molecular dynamics (MD) simulations using Morse interaction potential are performed in studies of [110] symmetrical tilt grain boundary (GB) structures with mis-orientation angles 50.5 degrees(Sigma 11), 129.5 degrees(Sigma 11), 70.5 degrees(Sigma 3) and 109.5 degrees(Sigma 3) at various tempratures. The GB structures are found to start local disordering at about 0.5T(m)(T-m is the melting point of aluminium) for 50.5 degrees(Sigma 11), 0.32T(m) for 129.5 degrees(Sigma 11) and 0.38T(m) for 70.5 degrees(Sigma 3), respectively. These results agree with conclusions deduced from the anelastic measurements. But, for twin-boundary structure 109.5 degrees(Sigma 3), this disordering has not been found even when temperature increases up to 0.9T(m).
Resumo:
we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.
Resumo:
Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.
Resumo:
A perturbation solution is obtained for the local stress-strain fields in an axially cracked cylindrical shell. The tenth-order differential equations are used that take into account the transverse shear deformation. The perturbation of a curvature parameter, λ, is employed, where . The stress intensity factors for finite size cylindrical shells subjected to bending and internal pressure are evaluated. Sufficient accuracy can be obtained without using fine mesh sizes in regions near the crack tip. Also analyzed are the influence of cylinder diameter and shearing stiffness on bulging.
Resumo:
that the Stokes-interaction relation is reasonable qualitatively but not correct
Resumo:
Using the approach of local expansion, we analyze the magnetostatic relations in the case of conventional turbulence. The turbulent relations are obtained consisten tly for themomentum equation and induction equation of both the average and fluctuation relations.In comparison with the magnetostatic relations as discussed usually, turbulent fluctuationfields produce forces, one of which 1/(4π)(α1×B0)×B0 may have parallel and perpendicular components in the direction of magnetic field, the other of which 1/(4π)K×B0 is introduced by the boundary value of turbulence and is perpendicular to the magnetic field. In the case of 2-dimensional configuration of magnetic field, the basic equation will be reduced into a second-order elliptic equation, which includes some linear and nonlinear terms introduced by turbulent fluctuation fields. Turbulent fields may change the configuration of magnetic field and even shear it non-uniformly. The study on the influence of turbulent fields is significant since they are observed in many astrophysical environments.
Resumo:
In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)×B 0=(#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.
Resumo:
DNS of spatiotemporal evolution of a wake-type flow is performed. In the incoming flow, a local spanwise nonuniformity in momentum defect is initially imposed. Results show that the spanwise nonuniformity leads to a series of symmetric twist vortex dislocation in downstream of the flow. Vortex line variations and substantial transition of vorticity from spanwise to the streamwise and vertical directions clearly feature the generation of a vortex dislocation and the real vortex linking in the dislocation. Dynamical process and the mechanism responsible for the vortex dislocation are described.
Resumo:
Point-particle based direct numerical simulation (PPDNS) has been a productive research tool for studying both single-particle and particle-pair statistics of inertial particles suspended in a turbulent carrier flow. Here we focus on its use in addressing particle-pair statistics relevant to the quantification of turbulent collision rate of inertial particles. PPDNS is particularly useful as the interaction of particles with small-scale (dissipative) turbulent motion of the carrier flow is mostly relevant. Furthermore, since the particle size may be much smaller than the Kolmogorov length of the background fluid turbulence, a large number of particles are needed to accumulate meaningful pair statistics. Starting from the relative simple Lagrangian tracking of so-called ghost particles, PPDNS has significantly advanced our theoretical understanding of the kinematic formulation of the turbulent geometric collision kernel by providing essential data on dynamic collision kernel, radial relative velocity, and radial distribution function. A recent extension of PPDNS is a hybrid direct numerical simulation (HDNS) approach in which the effect of local hydrodynamic interactions of particles is considered, allowing quantitative assessment of the enhancement of collision efficiency by fluid turbulence. Limitations and open issues in PPDNS and HDNS are discussed. Finally, on-going studies of turbulent collision of inertial particles using large-eddy simulations and particle- resolved simulations are briefly discussed.
Resumo:
We analyse further the entanglement purification protocol proposed by Feng et al. (Phys. Lett. A 271 (2000) 44) in the case of imperfect local operations and measurements. It is found that this protocol allows of higher error threshold. Compared with the standard entanglement purification proposed by Bennett et al. [Phys. Rev. Lett. 76 (1996) 722], it turns out that this protocol is remarkably robust against the influences of imperfect local operations and measurements.
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Rabi oscillation of the thin bulk semiconductor GaAs, which takes into account the effect of the local-field correction induced by the interacting excitons, is investigated by numerically solving the semiconductor Bloch equations. It is found, for a 2 pi few-cycle pulse excitation, that two incomplete Rabi-floppings emerge due to the competition between the Rabi frequency of the incident pulse and the internal-field matrices. Furthermore, for a sub-cycle 2 pi pulse excitation a complete Rabi-flopping can occur because of the absolute phase effect. We ascribe these characteristics of the Rabi oscillation to the renormalized Rabi frequency.