80 resultados para Linear equation with two unknowns
Resumo:
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.
Resumo:
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.
Resumo:
New titanium complexes with two nonsymmetric bidentate beta-enaminoketonato (N,O) ligands (4a-e), [(Ph)NC(R-2)C(H)C(R-1)O](2)TiCl2, have been synthesized. X-ray crystal structure reveals that complex 4a has a C-2-symmetric conformation with a distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-e are active catalysts for ethylene polymerization at room temperature, producing high molecular weight polyethylenes bearing linear structures. The 4a,b/MMAO catalyst systems exhibit the characteristics of a quasi-living polymerization of ethylene, producing polyethylenes with narrow molecular weight distributions. Moreover, the 4a-d/MMAO catalyst systems are also capable of promoting the quasi-living copolymerization of ethylene with norbornene at room temperature, yielding high molecular weight alternating copolymers with narrow molecular weight distributions. The quasi-living nature of the catalysts allows the synthesis of new A-B polyethylene-block-poly(ethylene-conorbornene) diblock copolymer.
Resumo:
The nonisothermal crystallization behavior of ethylene terephthalate-ethylene oxide segmented copolymers has been studied by means of differential scanning calorimetry (DSC). The kinetics of ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed by the Ozawa equation. During the crystallization of the high-T-m segments (PET), the low-T-m segments (PEO) act as a noncrystalline diluent, the crystallization behavior of PET obeys the Ozawa theory. When the PEO segments begin to crystallize, the PET phase is always partially solidified and the presence of the spherulitic microstructure of PET profoundly influences the crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Based on similarity analyses, the flow-induced vibrations of a near-wall cylinder with 2 degrees of freedom are investigated experimentally by employing a hydroelastic apparatus in conjunction with a flume. The cylinder's vibration amplitude, vibration frequency and vortex shedding frequency were measured and analyzed. The effects of gap-to-diameter ratio (e,ID) upon the vibration responses are further investigated. The experimental results indicate that, when the reduced velocity (Vr) is small (e.g. Vr = 1.2 similar to 2.6), only streamwise vibration occurs, and its frequency is quite close to its natural frequency in still water. When increasing Vr (e.g. Vr > 3.4), both streamwise and transverse vibrations of the near-wall cylinder may occur. In the examined range of gap-to-diameter ratio (0.42 < e(0)/D < 2.68), 2 vibration stages (in terms of Vr) of streamwise vibrations usually exist: First Streamwise Vibration (FSV) and Second Streamwise Vibration (SSV). In the SSV stage, the vortex shedding frequency may either undergo a jump to that of the streamwise vibration, or stay consistent with that of the transverse vibration. The amplitudes of transverse vibration are usually much larger than those of streamwise vibration for the same value of e(0)/D. The maximum amplitudes of both streamwise and transverse vibration get larger with the increase of e(0)/D (0.42 < e(0)/D < 2.68).
Resumo:
Characteristic burtsing behavior is observed in a driven, two-dimensional viscous flow, confined to a square domain and subject to no-slip boundaries. Passing a critical parameter value, an existing chaotic attractor undergoes a crisis, after which the flow initially enters a transient bursting regime. Bursting is caused by ejections from and return to a limited subdomain of the phase space, whereas the precrisis chaotic set forms the asymptotic attractor of the flow. For increasing values of the control parameter the length of the bursting regime increases progressively. Passing another critical parameter value, a second crisis leads to the appearance of a secondary type of bursting, of very large dynamical range. Within the bursting regime the flow then switches in irregular intervals from the primary to the secondary type of bursting. Peak enstrophy levels for both types of bursting are associated to the collapse of a primary vortex into a quadrupolar state.
Resumo:
The flow-induced vibration of a cylinder with two degrees of freedom near a rigid wall under the action of steady flow is investigated experimentally. The vibration amplitude and frequency of the cylinder and the vortex shedding frequency at the wake flow region of the cylinder are measured. The influence of gap-to-diameter ratio upon the amplitude response is analyzed. The experimental results indicate that when the reduced velocity (Vr) is in the range of 1.2 < Vr < 2.6, only streamwise vibration with small amplitude occurs, whose frequency is quite close to its natural frequency in the still water. When the reduced velocity Vr > 3.4, both the streamwise and transverse vibrations of the cylinder occur. In this range, the amplitudes of transverse vibration are much larger than those of streamwise vibrations, and the amplitudes of the streamwise vibration also get larger than those at the range of 1.2 < Vr < 2.6. At the range of Vr > 3.4, the frequency of streamwise vibration undergoes a jump at certain values of Vr, at which the streamwise vibrating frequency is twice as much as the transverse one. However, when the streamwise vibration does not experience a jump, its frequency is the same as that of the transverse vibration. The maximum values of second streamwise and transverse vibration amplitudes increase with increasing gap-to-diameter ratios.
Resumo:
The group velocities of the probe laser field are studied in a A-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance. we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the guiding of neutral atoms with two parallel microfabricated current-carrying wires on the atom chip and a vertical magnetic bias field. The atoms are guided along a magnetic field minimum parallel to the current-carrying wires and confined in the other two directions. We describe in detail how the precooled atoms are efficiently loaded into the two-wire guide. We present a detailed experimental study of the motional properties of the atoms in the guide and the relationship between the location of the guide and the vertical bias field. This two-wire guide with vertical bias field can be used to realize large area atom interferometer.
Resumo:
As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.
Resumo:
Three kinds of metal(II) tetraazaporphyrin complexes with blue-violet and red light wavelength absorption were synthesized by refluxing tetraazaporphyrin ligand and different metal(II) ions, respectively. Their structures were confirmed by elemental analysis, LDI-TOF-MS, FT-IR and UV-Vis. The solubility of metal(II) tetraazaporphyrin complexes in organic solvents and absorption properties of their chloroform solution and films on K9 glass in the region 250-800 nm were measured. The influence on the difference of absorption maximum from metal(II) tetraazaporphyrin complexes to tetraazaporphyrin ligand by different metal(II) ions was studied. In addition, the thermal stability of the complexes was also evaluated. (c) 2006 Elsevier Ltd. All rights reserved.