15 resultados para Linear equation with two unknowns

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a technique for obtaining the stochastic response of a nonlinear continuous system. First, the general method of nonstationary continuous equivalent linearization is developed. This technique allows replacement of the original nonlinear system with a time-varying linear continuous system. Next, a numerical implementation is described which allows solution of complex problems on a digital computer. In this procedure, the linear replacement system is discretized by the finite element method. Application of this method to systems satisfying the one-dimensional wave equation with two different types of constitutive nonlinearities is described. Results are discussed for nonlinear stress-strain laws of both hardening and softening types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.

The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".

In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.

Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A means of assessing the effectiveness of methods used in the numerical solution of various linear ill-posed problems is outlined. Two methods: Tikhonov' s method of regularization and the quasireversibility method of Lattès and Lions are appraised from this point of view.

In the former method, Tikhonov provides a useful means for incorporating a constraint into numerical algorithms. The analysis suggests that the approach can be generalized to embody constraints other than those employed by Tikhonov. This is effected and the general "T-method" is the result.

A T-method is used on an extended version of the backwards heat equation with spatially variable coefficients. Numerical computations based upon it are performed.

The statistical method developed by Franklin is shown to have an interpretation as a T-method. This interpretation, although somewhat loose, does explain some empirical convergence properties which are difficult to pin down via a purely statistical argument.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.

A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.

A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.

Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.

Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.

In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.

In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.

In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.

Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.

In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.

Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The box scheme proposed by H. B. Keller is a numerical method for solving parabolic partial differential equations. We give a convergence proof of this scheme for the heat equation, for a linear parabolic system, and for a class of nonlinear parabolic equations. Von Neumann stability is shown to hold for the box scheme combined with the method of fractional steps to solve the two-dimensional heat equation. Computations were performed on Burgers' equation with three different initial conditions, and Richardson extrapolation is shown to be effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the dynamic response of a General multidegree-of-freedom linear system with a one dimensional nonlinear constraint attached between two points. The nonlinear constraint is assumed to consist of rate-independent conservative and hysteretic nonlinearities and may contain a viscous dissipation element. The dynamic equations for general spatial and temporal load distributions are derived for both continuous and discrete systems. The method of equivalent linearization is used to develop equations which govern the approximate steady-state response to generally distributed loads with harmonic time dependence.

The qualitative response behavior of a class of undamped chainlike structures with a nonlinear terminal constraint is investigated. It is shown that the hardening or softening behavior of every resonance curve is similar and is determined by the properties of the constraint. Also examined are the number and location of resonance curves, the boundedness of the forced response, the loci of response extrema, and other characteristics of the response. Particular consideration is given to the dependence of the response characteristics on the properties of the linear system, the nonlinear constraint, and the load distribution.

Numerical examples of the approximate steady-state response of three structural systems are presented. These examples illustrate the application of the formulation and qualitative theory. It is shown that disconnected response curves and response curves which cross are obtained for base excitation of a uniform shear beam with a cubic spring foundation. Disconnected response curves are also obtained for the steady-state response to a concentrated load of a chainlike structure with a hardening hysteretic constraint. The accuracy of the approximate response curves is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a technique for obtaining the response of linear structural systems with parameter uncertainties subjected to either deterministic or random excitation. The parameter uncertainties are modeled as random variables or random fields, and are assumed to be time-independent. The new method is an extension of the deterministic finite element method to the space of random functions.

First, the general formulation of the method is developed, in the case where the excitation is deterministic in time. Next, the application of this formulation to systems satisfying the one-dimensional wave equation with uncertainty in their physical properties is described. A particular physical conceptualization of this equation is chosen for study, and some engineering applications are discussed in both an earthquake ground motion and a structural context.

Finally, the formulation of the new method is extended to include cases where the excitation is random in time. Application of this formulation to the random response of a primary-secondary system is described. It is found that parameter uncertainties can have a strong effect on the system response characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in the possible applications of a priori inequalities in linear elasticity theory motivated the present investigation. Korn's inequality under various side conditions is considered, with emphasis on the Korn's constant. In the "second case" of Korn's inequality, a variational approach leads to an eigenvalue problem; it is shown that, for simply-connected two-dimensional regions, the problem of determining the spectrum of this eigenvalue problem is equivalent to finding the values of Poisson's ratio for which the displacement boundary-value problem of linear homogeneous isotropic elastostatics has a non-unique solution.

Previous work on the uniqueness and non-uniqueness issue for the latter problem is examined and the results applied to the spectrum of the Korn eigenvalue problem. In this way, further information on the Korn constant for general regions is obtained.

A generalization of the "main case" of Korn's inequality is introduced and the associated eigenvalue problem is a gain related to the displacement boundary-value problem of linear elastostatics in two dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are important problems to overcome if solar energy or other renewable energy sources are to be used effectively on a global scale. Solar photons must not only be harvested and converted into a usable form, but they must also be efficiently stored so that energy is available for use on cloudy days and at night. In this work, both the energy conversion and energy storage problems are addressed. Specifically, two cobalt complexes were designed and their reactivity probed for applications in energy conversion and storage. The first chapter describes a cobalt complex that is the first example of a dimeric cobalt compound with two singly proton-bridged cobaloxime units linked by a central BO4--bridge. Using electrochemical methods, the redox properties of the dimer were evaluated and it was found to be an electrocatalyst for proton reduction in acetonitrile.

Because hydrogen gas is difficult to handle and store, the hydrogenation of CO2 and later dehydrogenation of the liquid product, formic acid, has been proposed as a hydrogen storage system. Thus, a second complex, described in chapter two, supported by a triphosphine ligand framework was used as a catalyst precursor for this key dehydrogenation step. The studies here demonstrate the efficacy of the complex as a precatalyst for the desired reaction, with good conversion of starting formic acid to CO2 and H2. In order to better understand the properties of the triphosphine cobalt complex, a synthetic procedure for substituting electron donating groups (e.g., methoxy groups) onto the ligand was investigated, yielding a novel diphosphine cobalt(II) complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.

In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.

This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.

The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.

The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.

Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.

Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

Chapter 1.....A physicochemical study of the DNA molecules from the three bacteriophages, N1, N5, and N6, which infect the bacterium, M. lysodeikticus, has been made. The molecular weights, as measured by both electron microscopy and sedimentation velocity, are 23 x 106 for N5 DNA and 31 x 106 for N1 and N6 DNA's. All three DNA's are capable of thermally reversible cyclization. N1 and N6 DNA's have identical or very similar base sequences as judged by membrane filter hybridization and by electron microscope heteroduplex studies. They have identical or similar cohesive ends. These results are in accord with the close biological relation between N1 and N6 phages. N5 DNA is not closely related to N1 or N6 DNA. The denaturation Tm of all three DNA's is the same and corresponds to a (GC) content of 70%. However, the buoyant densities in CsCl of Nl and N6 DNA's are lower than expected, corresponding to predicted GC contents of 64 and 67%. The buoyant densities in Cs2SO4 are also somewhat anomalous. The buoyant density anomalies are probably due to the presence of odd bases. However, direct base composition analysis of N1 DNA by anion exchange chromatography confirms a GC content of 70%, and, in the elution system used, no peaks due to odd bases are present.

Chapter 2.....A covalently closed circular DNA form has been observed as an intracellular form during both productive and abortive infection processes in M. lysodeikticus. This species has been isolated by the method of CsC1-ethidium bromide centrifugation and examined with an electron microscope.

Chapter 3.....A minute circular DNA has been discovered as a homogeneous population in M. lysodeikticus. Its length and molecular weight as determined by electron microscopy are 0.445 μ and 0.88 x 106 daltons respectively. There is about one minicircle per bacterium.

Chapter 4.....Several strains of E. coli 15 harbor a prophage. Viral growth can be induced by exposing the host to mitomycin C or to uv irradiation. The coliphage 15 particles from E. coli 15 and E, coli 15 T- appear as normal phage with head and tail structure; the particles from E. coli 15 TAU are tailless. The complete particles exert a colicinogenic activity on E.coli 15 and 15 T-, the tailless particles do not. No host for a productive viral infection has been found and the phage may be defective. The properties of the DNA of the virus have been studied, mainly by electron microscopy. After induction but before lysis, a closed circular DNA with a contour length of about 11.9 μ is found in the bacterium; the mature phage DNA is a linear duplex and 7.5% longer than the intracellular circular form. This suggests the hypothesis that the mature phage DNA is terminally repetitious and circularly permuted. The hypothesis was confirmed by observing that denaturation and renaturation of the mature phage DNA produce circular duplexes with two single-stranded branches corresponding to the terminal repetition. The contour length of the mature phage DNA was measured relative to φX RFII DNA and λ DNA; the calculated molecular weight is 27 x 106. The length of the single-stranded terminal repetition was compared to the length of φX 174 DNA under conditions where single-stranded DNA is seen in an extended form in electron micrographs. The length of the terminal repetition is found to be 7.4% of the length of the nonrepetitious part of the coliphage 15 DNA. The number of base pairs in the terminal repetition is variable in different molecules, with a fractional standard deviation of 0.18 of the average number in the terminal repetition. A new phenomenon termed "branch migration" has been discovered in renatured circular molecules; it results in forked branches, with two emerging single strands, at the position of the terminal repetition. The distribution of branch separations between the two terminal repetitions in the population of renatured circular molecules was studied. The observed distribution suggests that there is an excluded volume effect in the renaturation of a population of circularly permuted molecules such that strands with close beginning points preferentially renature with each other. This selective renaturation and the phenomenon of branch migration both affect the distribution of branch separations; the observed distribution does not contradict the hypothesis of a random distribution of beginning points around the chromosome.

Chapter 5....Some physicochemical studies on the minicircular DNA species in E. coli 15 (0.670 μ, 1.47 x 106 daltons) have been made. Electron microscopic observations showed multimeric forms of the minicircle which amount to 5% of total DNA species and also showed presumably replicating forms of the minicircle. A renaturation kinetic study showed that the minicircle is a unique DNA species in its size and base sequence. A study on the minicircle replication has been made under condition in which host DNA synthesis is synchronized. Despite experimental uncertainties involved, it seems that the minicircle replication is random and the number of the minicircles increases continuously throughout a generation of the host, regardless of host DNA synchronization.

Part II

The flow dichroism of dilute DNA solutions (A260≈0.1) has been studied in a Couette-type apparatus with the outer cylinder rotating and with the light path parallel to the cylinder axis. Shear gradients in the range of 5-160 sec.-1 were studied. The DNA samples were whole, "half," and "quarter" molecules of T4 bacteriophage DNA, and linear and circular λb2b5c DNA. For the linear molecules, the fractional flow dichroism is a linear function of molecular weight. The dichroism for linear A DNA is about 1.8 that of the circular molecule. For a given DNA, the dichroism is an approximately linear function of shear gradient, but with a slight upward curvature at low values of G, and some trend toward saturation at larger values of G. The fractional dichroism increases as the supporting electrolyte concentration decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two general, numerically exact, quantum mechanical methods have been developed for the calculation of energy transfer in molecular collisions. The methods do not treat electronic transitions because of the exchange symmetry of the electrons. All interactions between the atoms in the system are written as potential energies.

The first method is a matrix generalization of the invariant imbedding procedure, 17, 20 adapted for multi-channel collision processes. The second method is based on a direct integration of the matrix Schrödinger equation, with a re-orthogonalization transform applied during the integration.

Both methods have been applied to a collinear collision model for two diatoms, interacting via a repulsive exponential potential. Two major studies were performed. The first was to determine the energy dependence of the transition probabilities for an H2 on the H2 model system. Transitions are possible between translational energy and vibrational energy, and from vibrational modes of one H2 to the other H2. The second study was to determine the variation of vibrational energy transfer probability with differences in natural frequency of two diatoms similar to N2.

Comparisons were made to previous approximate analytical solutions of this same problem. For translational to vibrational energy transfer, the previous approximations were not adequate. For vibrational to vibrational energy transfer of one vibrational quantum, the approximations were quite good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.